

Romain Hamet Andraž Andolšek Aleksei Mashlakov Anna Flessa

Ljubljana, 15th September

The MAESHA innovations for island energy market evolution

Demonstration of smart and flexible solutions for a decarbonised energy future in Mayotte and other European islands

The MAESHA project and context

- Procurement and management of distributed flexibilities
- Flexibility market & product design
- Island-scale energy system modelling

Flexibility market & product design

Aleksei Mashlakov Centrica

- ➢Objectives
- Methodology
- Market framework design
- Frequency control products
- Frequency stability requirement
- Market clearing options for frequency control
- Conclusions and outlook

Challenges & goals of market design

Market design aims to maximize social welfare under conditions of:

- Extremely low market liquidity
 - applying mechanisms to detect and prevent abuse of market power
 - increasing technology neutrality by lowering entry barriers for DERs via VPPs

Rigid energy market structure

- coexistence of independent flexibility market and vertically integrated utility
- Limited inertia in the power system
 - *improving system frequency stability with faster response times*
- Costly and CO₂ intensive electricity supply mix
 - limiting the use of less inefficient peak diesel generators
 - Increasing hosting capacity of renewable sources (beyond 36%)

Methodology

Market framework design (1)

Market design of flexibility markets in MAESHA

Market framework design (2)

Market design of flexibility markets in MAESHA

Market framework design (2)

Market design of flexibility markets in MAESHA

Frequency control products (1)

www.maesha.eu

>Experiment-based stability assessment

Real-life stability testing of Mayotte power system

- Normal frequency 50.15 Hz
- High RoCoF ~ 1.9 Hz/s

Frequency control products (1)

Frequency control products (2)

www.maesha.eu

9 41

Technical specification: Frequency stability (1)

Technical specification: Frequency stability (2)

System stability simulation of Mayotte power system. SOURCE: TUB

- MRR is affected by a set of available reserve products and inertia level
 - Products with faster response time provide more value to the system dynamics
- Static MRR is not sufficient to guarantee system stability as
 - It disconnects the system state and market clearing results
- How to enable a single-market clearing that would couple interdependent inertia, FFR and FCR response products and satisfy stability requirement?

Market clearing

- Option 1: Use Product Scalar to reward providers that can offer products with enhanced technical performance (i.e., a faster delivery time)
 - Utilized by <u>EirGrid for FFR service or on PJM'</u> <u>Marginal Rate of Technical Substitution</u> for RegA and RegB products

- 1. Simulate MRR for a set of inertia levels
- 2. Approximate the total MRR with regression

 $P_{MRR} = P_{FCR} - Product Scalar \cdot P_{FFR}$

3. Clear the market on scalar-adjusted capacity

 $Scalar - adjusted MW = Offered MW \cdot Product Scalar$

www.maesha.eu

Garcia, M., & Baldick, R. (2021). Requirements for interdependent reserve types providing primary frequency control. IEEE Transactions on Power Systems, 37(1), 51-64.

Market clearing

www.maesha.eu

Option 2: Allow different availability/reliability levels for reserve providers to increase the market liquidity

The availability can be estimated with historic performance. Then, based on <u>PJM'</u> <u>MRTS for RegA and RegB products</u>:

Effective MW = Offered MW · *Historic Performance Score* · *Product Scalar*

 $Performance - adjusted \ price \ (euro) = \frac{Capacity \ Offer \ Price \ \left(\frac{euro}{MW}\right)}{Historic \ Performance \ Score}$

Performance-based remuneration gives incentive to better service provision and enables transparent performance-based clearing of the market.

Market clearing

> Option 3: Allow all units to bid in the market on equal footing via ideal tender

- optimizing the system response dynamics **not based on the service requirements** but **on the available response profiles** with unit-specific droop rates, energy content, and reaction times
 - their performance evaluation is tailored to their expected capabilities

≻Overall approach:

www.maesha.eu

• Minimize total cost of asset responses:

$$\min\sum_{j=1}^m \delta_j \pi_j$$

• System dynamics is defined by swing equation:

$$2H\frac{df}{dt} = \Delta P = -\Delta P_{dist} + \Delta P_m - D\Delta f.$$

• Subject to RoCoF, frequency nadir and quasi-steady-state frequency requirements

Conclusions and outlook

> We went through the goals of market design on Mayotte island

- > We **explored** the market design **methodology** and **framework** in MAESHA
- > We **identified the need of single-market clearing** for frequency response products
- Several **options** were shown **for the single-market clearing**:
 - Use of product scalars to reward fast reacting reserves
 - Use of historical performance scores to allow different availability
 - Use of ideal tender to mitigate the product requirement differentiation and enable technology neutrality

> More research on the response-based market clearing in the end of the presentation

- Dynamic Virtual Power Plants as response matching approach on all time scales
- Joint energy-reserve markets as the target market design on islands

Questions/Reactions from the floor?

Further literature on market clearing

- Chávez, H., Baldick, R., & Sharma, S. (2014). Governor rate-constrained OPF for primary frequency control adequacy. *IEEE Transactions on Power Systems*, 29(3), 1473-1480.
 - The PFR adequacy conditions are expressed as a function of individual unit governor response ramp rates and system inertia
- Teng, F., Trovato, V., & Strbac, G. (2015). Stochastic scheduling with inertia-dependent fast frequency response requirements. *IEEE Transactions on Power Systems*, 31(2), 1557-1566.
 - MILP formulation for stochastic unit commitment that optimizes system operation by simultaneously scheduling energy production, standing/spinning reserves and inertia-dependent fast frequency response
- Jomaux, J., Mercier, T., & De Jaeger, E. (2016, April). A methodology for sizing primary frequency control in function of grid inertia. In 2016 IEEE International Energy Conference (ENERGYCON) (pp. 1-6). IEEE.
 - Presents a linear programming problem to select the most cost-efficient FCR providers to sustain disturbance while respecting static and dynamic constraints
- Badesa, L., Teng, F., & Strbac, G. (2019). Simultaneous scheduling of multiple frequency services in stochastic unit commitment. *IEEE Transactions on Power Systems*, 34(5), 3858-3868.
 - Novel frequency stability constraints that, for the first time, allow to simultaneously cooptimise the provision of synchronised and synthetic inertia, PFR, EFR and a dynamically-reduced largest power infeed.

Further literature on market clearing

- Badesa, L., Teng, F., & Strbac, G. (2020). Optimal portfolio of distinct frequency response services in lowinertia systems. *IEEE Transactions on Power Systems*, 35(6), 4459-4469.
 - Shows that droop control services can be accurately and conservatively approximated by a power ramp with an activation delay; formulates the frequency-security conditions as chance constraints for any finite number of FR services with distinguished characteristics, such as different delivery times and activation delays.
- Liang, Z., Mieth, R., & Dvorkin, Y. (2022). Inertia pricing in stochastic electricity markets. IEEE Transactions on Power Systems.
 - Simultaneous procurement of energy, reserve and inertia providing services.
- Liang, Z., Mieth, R., Dvorkin, Y., & Ortega-Vazquez, M. A. (2022). Weather-Driven Flexibility Reserve Procurement. arXiv preprint arXiv:2209.00707.
 - Weather-driven flexibility reserve sizing and allocation for large-scale wind power installations
- Björk, J., Johansson, K. H., & Dörfler, F. (2022). Dynamic virtual power plant design for fast frequency reserves: Coordinating hydro and wind. *IEEE Transactions on Control of Network Systems*.
 - The controllers rely on dynamic participation factors (DPFs) and are designed so that all devices collectively match the Bode diagram of a design target, specified by the SO's requirements.

