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A B S T R A C T

Deep learning models have the potential to advance the short-term decision-making of electricity market
participants and system operators by capturing the complex dependences and uncertainties of power system
operation. Currently, however, the adoption of global deep learning models for multivariate energy forecasting
in power systems is far behind the developments in the deep learning research field. In this context, the
objectives of this study are to review recent developments in the field of probabilistic, multivariate, and
multihorizon time series forecasting and empirically evaluate the performance of novel global deep learning
models for forecasting wind and solar generation, electricity load, and wholesale electricity price for intraday
and day-ahead time horizons. Two forecast types, deterministic and probabilistic forecasts, are studied. The
evaluation data consist of real-world datasets with hourly resolution at the levels of an individual customer and
regional and national electricity market bidding zones. The model evaluation criteria include achievable levels
of forecasting accuracy and uncertainty risks, hyperparameter sensitivity, the effect of exogenous variables and
fieldwise dataset split, and run-time efficiency factors, such as memory utilization, simulation time, electricity
consumption, and convergence rate. We conclude that the performance of the global models is more beneficial
for intraday forecasts of heterogeneous datasets with nonuniform patterns of time series, but can be affected
by the hyperparameter sensitivity and hardware limitations with the growth of dataset dimensionality. The
results can serve as a reference point for the quantitative evaluation of deep learning models for probabilistic
multivariate energy forecasting in power systems.
1. Introduction

The short-term forecasting of energy time series, such as wind
and solar energy, electricity load and price, is at the core of electric
power system trading and operation. It provides the electricity market
participants and system operators with information on the next hours
and days to enable cost-efficient market bidding and operating reserve
procurement and detecting network congestion. However, the opera-
tional predictability of modern power systems is being challenged by
intermittency, uncertainty, and stochasticity as the installed capacity of
renewable energy sources (RES) increases and new distributed energy
resources are introduced into the existing power networks. To adapt
to these decarbonization and decentralization trends and support the
risk-aware decision-making of power system actors, the present energy
forecasting approaches should be improved to estimate the predic-
tion uncertainties and leverage large amounts of data with complex
multivariate dependences [1].

Presently, deterministic forecasts are predominantly used in the
industry as an input to various power system optimization methods.
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However, there is a strong trend in the academia and interest in
the industry toward the transition from the deterministic forecasts to
probabilistic methods with uncertainty quantification [2]. A proba-
bilistic forecast provides a possible range of forecasting errors with
the respective probability in contrast to pointwise deterministic fore-
casts. Moreover, the adoption of a forecasting tool/product enables
reducing the operating costs if appropriately applied for solving risk-
constrained decision-making problems [3]. The risk management is
especially important in the conditions of volatile spot and reserve
market prices caused by the large uncertainties of varying electricity
load and weather-dependent renewable generation from wind and solar
radiation. Therefore, the quantification of uncertainty as a vital part of
risk management is critical for truly optimal decision-making in power
systems.

Furthermore, a substantial body of research in the probabilistic
energy forecasting literature focuses on local (univariate) forecasting
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problems [4] where marginal predictive densities are estimated per in-
dividual time series assuming (conditional) independence of time series
in high-dimensional settings. However, these local approaches exclude
the important effects of complex temporal, spatial, and cross-lagged
correlations in power systems [5]. The examples of such correlations
are the dependence between successive lead times of electricity market
price, the parameters of renewable generation (e.g., solar radiation,
wind speed) between power plant locations, and the lagged effect of
weather parameters on a load profile. Disregarding these dependences
with marginal description in power systems-related operational prob-
lems with multiple power plants or optimization time periods leads
to suboptimal decisions, and hence, is often insufficient forecasting
approach [6]. In contrast, the ability to extract and leverage the time-
invariant patterns by simultaneously considering several variables can
potentially provide more accurate predictions and lower costs [7].
As a result, these factors have provoked an interest in probabilistic
forecasting problems with multivariate predictive distributions that can
leverage spatio-temporal and cross-lagged correlations with a single
global (multivariate) model [8].

The key challenges for accurate and efficient forecasting in the
probabilistic multivariate forecasting problems include the following:
(a) recognizing short-term and long-term dynamics and noise charac-
teristics of individual time series; (b) discovering nonlinear covariate
and latent relationships between the exogenous (i.e., field-independent
series or outside influences) and endogenous (i.e., field-dependent)
series; (c) sharply (i.e., by minimal variance) and reliably (i.e., by
minimal bias) estimating the uncertainty of model predictions; (d)
mitigating the effects of a varying time series scale; (e) making pre-
dictions in the conditions of data sparsity and ‘‘cold start’’, i.e., new
variable or system changes; and (f) being scalable for a large amount
of time series [9–11]. Traditionally, statistical multivariate forecast-
ing techniques such as vector autoregression (VAR) and vector au-
toregressive integrated moving average (VARIMA) [4], linear support
vector regression (LSVR) [12], multivariate generalized autoregressive
conditional heteroskedasticity (MGARCH) models [13], linear ridge
(LRidge) regression [14] and Gaussian processes (GP) [15] have been
used for such problems, but they have several limitations related to
nonlinearity and scalability [16]. Recently, several novel global deep
learning (DL) architectures for multivariate time series forecasting
with the capabilities to tackle these challenges have been proposed:
autoregressive recurrent networks (DeepAR) [9], deep factor models
with random effects (DFM-RF) [10], long- and short-term time se-
ries network (LSTNet) [16], temporal pattern attention (TPA) [17],
deep temporal convolutional network (DeepTCN) [18], and dual self-
attention network (DSANet) [19], to name a few. These models have
demonstrated superior accuracy. It is worth noting that any DL method
initially designed solely for point forecasts can be extended to pro-
vide an estimate of the related uncertainty by applying variational
approximation by the Monte Carlo (MC) dropout [20]. Furthermore,
progress has been made in explainability and interpretability of DL
models also in the context of time series [21] (e.g., through an attention
mechanism’s weights [22] or saliency maps [23] over time dimensions
and features), which gradually changes the general opinion of them
as representing fully ‘‘black box’’ models and brings them closer to
industry acceptance. These factors along with the wealth of data being
collected in power systems all the time and the rapid increase in
computing capabilities potentially make them a promising method for
probabilistic multivariate energy forecasting.

1.1. About the related work

In the power system domain, there is a plethora of local (univariate)
DL-based forecasting models that consider time series independently
and, hence, are missing the important interdependence between the se-
ries. For instance, the known forecasting applications include electricity
2

price [24], wind [25] and solar [26] power production, total [27] and
net [28] load, and battery frequency response [29]. However, there is
increasing interest in applying DL models to multivariate forecasting
applications to capture both spatio-temporal information and cross-
variable dependences in power markets enriched with RES [7], such
as solar [30] and especially wind [31]. For example, an improved
deep mixture density network (IDMDN) for a short-term wind power
probabilistic forecasting of multiple wind farms and the entire re-
gion was introduced in [32] to model nonlinear and spatio-temporally
coupled uncertainties in wind power prediction. A deep architecture,
predictive spatio-temporal network (PSTN), was proposed in [33] for
wind speed prediction with the use of spatial features and temporal
dependences. A variational Bayesian DL model for probabilistic spatio-
temporal forecasting was presented in [34] that predicts the wind
speed in a region by exploiting multisite historical information. A
novel multifactor spatio-temporal correlation model for wind speed
forecasting was proposed in [35]. The combination of spatial and
temporal correlations extracted by the DL networks was also used for
very short-term solar irradiance forecasting in [36].

Despite the latest developments, the literature in DL-based proba-
bilistic multivariate time series forecasting with application to energy
forecasting is still in its infancy and is lagging behind the progress made
in the field of computer science that we review in Section 2. Moreover,
to the best of the authors’ knowledge, a comprehensive and sound
empirical evaluation of probabilistic multivariate DL architectures that
would assess their multihorizon forecast accuracy and uncertainty for
the needs of power systems is not yet available in the literature.
However, as stated in a tutorial study in [37] about probabilistic load
forecasting, reproducible empirical studies based on public data with
sufficient details and unified forecast evaluation are required for re-
search progress in the field. The same requirement is valid for DL-based
probabilistic multivariate studies because the literature is heavily oc-
cupied with empirical evaluations of DL-based univariate deterministic
cases [38] or statistical and physical models [39]. Furthermore, many
computing and efficiency details about DL-based forecasting models are
often ignored, yet they present valuable practical information if applied
for short-term operations.

1.2. Research gaps and scientific contribution

Given that the power system developments of global DL forecasting
models are far behind the progress in the DL research, our main aim
is to attain the parity between the advances in DL-based multivariate
forecasting and power system applicability. This justifies a comprehen-
sive quantitative evaluation of novel data-driven approaches developed
in the DL research, which motivates this paper with the focus to address
the following research gaps:

(i) Although various global DL models have emerged in recent years,
no systematic evaluation of the applicability or suitability of
these models to address the energy forecasting problem in power
systems has been carried out to date.

(ii) The sensitivity of the global DL models to hyperparameters and
exogenous time series has received limited attention in the liter-
ature.

(iii) The practical run-time requirements of the global DL models in
terms of computing power and energy efficiency continues to be
not well covered.

With these research gaps in mind, this study provides the following
contributions and novelty:

(i) Empirical evaluation of the advanced global DL models for accu-
racy and quantile risks on intraday and day-ahead time horizons
for the electricity load and price, and wind and solar generation
at the levels of individual customer, regional, and national power

system.
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(ii) Assessment of model sensitivity to common hyperparameters us-
ing sequential Bayesian optimization, calendar and time exoge-
nous variables, and fieldwise dataset split.

(iii) Relative estimation of run-time efficiency of the advanced global
DL models through total simulation time, the mean and standard
deviation of graphics processing unit (GPU) memory, convergence
rate, and estimated electricity consumption.

The analysis is performed using two real-world datasets includ-
ng almost three years’ worth of data with hourly resolution and
imensionality of hundreds of time series. An important assumption
s that the forecasts are solely based on past data, time and calendar
eatures ignoring meteorological observations and numerical weather
rediction. The results of this work can serve as a reference point for
L-based probabilistic multivariate forecasting of electricity load and
rice and wind and solar production at various power system levels.
he broader objective of this study is to comprehend the efficiency
f data-driven techniques in power system problems involving data
nalytics. Application of global DL-based models can help electricity
arket participants and power system operators in improving their

orecasting products and making better decisions on market bidding,
etting the operating reserve requirements, and detecting technical
roblems of grid management. Hence, a DL-based probabilistic mul-
ivariate forecasting model that can appropriately accommodate both
ncertainties and pattern dependences holds significant potential and
s thus of a special interest for electric power systems.

The rest of this paper is organized as follows. Section 2 describes
he background of the research in multivariate time series forecasting
nd reviews the progress in novel global DL architectures. The problem
ormulation, models examined, benchmarks, data used, evaluation met-
ics, the setting of hyperparameter optimization, and implementation
etails of the empirical study on multivariate probabilistic forecasting
re addressed in Section 3. Section 4 reports the results of the models
n point forecast accuracy and uncertainty estimation, hyperparameter
ensitivity, the effect of exogenous variables and fieldwise dataset split,
nd run-time efficiency. Finally, the results are discussed in Section 5
nd conclusions are derived in Section 6.

. Background and related literature

Statistical methods have been the basis for multivariate forecasting
rom its origin. The examples consist of parametric autoregressive
AR) models, such as the variants of VAR and VARIMA models [4]
nd the MGARCH model [13], parametric regression models, such as
SVR [12] and LRidge regression [14], and nonparametric methods,
uch as GP [15]. The main drawbacks of these approaches are related to
he inability to capture long-term and nonlinear relationships between
ime steps and between multivariate signals, and a high computational
ost and model capacity that can increase significantly over the larger
indow size and the number of time series [16]. The important impact
f the seasonalities and causal determinants of the related time series
as shown in [40], where joint modeling of related series in a hier-
rchical Bayesian state-space model (SSM) enabled to achieve sizable
ccuracy gains. Moreover, a scalability issue was addressed in [41]
ith temporal matrix factorization models (TMFMs) that support data-
riven temporal dependence learning and forecasting. However, these
ependences are limited to linear relationships [42].

A large amount of recent research is focused on global DL as a
olution to tackle the limitations of statistical methods. We provide

summary of these models in Table 1 and highlight the trends in
lobal DL methods in what follows below. For example, one of the
ain research directions in global DL methods is the merger of several

amilies of models to use the specific model strengths for the best
erformance; this approach was implemented, e.g., in LSTNet [16],
PA [17], DeepTCN [18], and DSANet [19]. Moreover, global DL
ethods are commonly used together with nonparametric models to
3

model forecast uncertainty (e.g., DeepAR [9] and DeepTCN [18]),
and with statistical AR methods to improve the accuracy by scale
consideration; such combination was applied, e.g., in LSTNet [16],
DSANet [19], and memory timeseries network (MTNet) [22]. The other
trend is to deploy an attention mechanism that provides a model with
the ability to focus on relevant subsets of its inputs to predict the
target series without explicitly hard-coding these subsets; the atten-
tion mechanism was employed, e.g., in LSTNet [16], TPA [17], and
DSANet [19]. This mechanism was designed to solve the vanishing
gradient problem of recurrent neural networks (RNNs) [43] when fore-
casting long-range dependences. A similar function is often performed
with skip connections [16] and residual blocks [18]. Furthermore, the
adoption of convolutional neural networks (CNNs) [44] that are known
for their success in capturing the spatial and temporal dependences
in image recognition surpasses the more traditional solutions with
RNNs in memorizing short- and long-term invariant patterns and as
a basis for the attention mechanism; the CNNs were utilized, e.g., in
TPA [17], DeepTCN [18], and DSANet [19]. However, both methods
(i.e., RNN and CNN) are dominant in most of the architectures in one
way or the other. In addition, the adaptive moment estimation (Adam)
optimization algorithm [45] is the first choice for the global DL models.

The challenge of many AR methods in capturing recurrent short-
and long-term patterns among multiple time series is addressed in the
LSTNet [16]. This model uses the strengths of CNNs to discover the
local dependence patterns among multidimensional input variables,
RNNs to capture long patterns, and RNN-skip or attention layers to
recognize the very long-term periodic patterns of time series. Moreover,
in parallel to the nonlinear neural network transformation that is
insensitive to the scale variations of inputs, it includes an AR linear
model to consider the effects of scale variation in the time series.

A TPA model was developed in [17] based on RNN and CNN
modules. The model has resolved several limitations of LSTNet, such
as manual tuning of the skip length of the recurrent-skip layer, poor
performance on data with a nonperiodic pattern, and averaging of
series-specific temporal information in the attention layer. In contrast,
the invariant temporal pattern information is automatically extracted
from each time series with CNN filters that operate similar to the
discrete Fourier transform. Thus, the model can focus on particular time
intervals for different time series and extract dynamic interdependences
of multivariate data.

A DSANet was proposed in [19]; it highlights the malperformance
of the attention mechanism used in LSTNet and TPA when modeling
data with dynamic period patterns or nonperiodic patterns. Instead, the
nonlinear branch of dual architecture completely dispenses RNNs and
applies global and local temporal convolutions to capture the complex
mixtures of global and local temporal representations of univariate
series. Moreover, a self-attention module is added above these convo-
lutions to identify cross-series dependences. Similarly to LSTNet, the
AR linear branch is included in the model to alleviate input scale
variations.

A mixture of DL-family models was also proposed in the architecture
of MTNet including a large memory network component, three inde-
pendent encoders, and an AR component. The memory component is
used to store the long-term historical data, while encoders equipped
with CNN, RNN, and an attention mechanism are used to convert the
input data and memory data into their feature representations. The
advantages of the model are a high interpretability using post-hoc
explanations with the attention mechanism and a capability to focus
on a period of time instead of particular timestamps in the past as it is
implemented in the LSTNet model.

DeepAR was designed as an AR-based RNN that relies on a global
model of related time series [9]. This global model learns the statistical
properties of the data by maximizing the log-likelihood of the network
outputs conditioned on past observations and covariates that can be
item- and time-dependent. DeepAR is claimed to be robust to the effects

of the time series with widely varying scales and can use a wide range
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Table 1
Summary of deep-learning-based multivariate time series models. Family of models: autoregressive (AR), convolutional neural network (CNN), recurrent neural network (RNN),
Gaussian processes (GP), feed-forward neural network (FFNN), temporal matrix factorization model (TMFM), likelihood model (LM), memory network (MN), quantile model (QM),
innovation state space model (ISSM); Exogenous variables: C (calendar), T (time), CT (categorical); Forecast type: CM (conditional mean), CD (conditional distribution); Dataset
imension: minute (m), hour (h), day (D), week (W), month (M); Tuning : grid search (GS), manual (M); (?) Not explicitly stated. Benchmark models: The abbreviations are explained
n the text.
Model Families

of models
Forecast
horizon

Exoge-
nous
variables

Optimizer Time series scaling Forecast
type

Dataset
dimension

Benchmark models Tuning

[16] LSTNet AR, CNN,
FFNN,
RNN

3 to 24 – Adam Max per series CM 10m, 1h, 1D AR, LRidge, LSVR,
TMFM, GP,
VAR-FFNN, RNN

GS

[17] TPA AR, CNN,
FFNN,
RNN

3 to 24 – Adam Max per series/ data CM 10m, 1h, 1D AR, LRidge, LSVR,
GP, LSTNet

GS

[19] DSANet AR, CNN,
FFNN

3 to 24 – Adam MinMax CM 1D VAR, LRidge, LSVR,
GP, RNN, LSTNet,
TPA

GS

[22] MTNet AR, CNN,
RNN, MN,
FFNN

3 to 24 C, T Adam (?) CM 10m, 1h, 1D AR, LRidge, LSVR,
GP, VAR-MLP,
RNN-GRU, LSTNet

GS

[9] DeepAR FFNN,
LM, RNN

24 to 52 CT, C, T Adam Mean per series CD 1h, 1W, 1M TMFM, RNN-LM,
AR-LM, ISSM

GS+M

[46] DSSM FFNN,
ISSM, LM,
RNN

8 to 48 C, T (?) Mean per series CD 1h, 1M, 4M DeepAR, TMFM (?)

[18] DeepTCN CNN,
FFNN,
LM/QM

12 to 24 CT, C, T Adam Standard/ MinMax CD 1h, 1D, 1M DeepAR, TMFM,
DSSM

M

[10] DFM-RF FFNN,
GP, ISSM,
LM, RNN

24 to 72 CT, C, T Adam Automatic per series CD 1h DeepAR, Multi
Quantile-RNN

–

[42] DeepGLO CNN,
TMFM

9 to 24 C, T Adam Standard/ unscaled CM 5m, 1h, 1D RNN, DeepAR,
TMFM

M

[47] ForecastNet CNN, GP 12 to 24 – Adam Standard CD, CM 1h, 1M DeepAR, TCN M
e
u

f

o
f
a
w
s
i
d

of likelihood functions to better capture the statistical properties of the
data. Moreover, the network enables the discovery of time-dependent
uncertainty growth and complex patterns, such as seasonal behavior
and cross-series dependences.

The Deep state space model (DSSM) proposed in [46] combines a
deep RNN and SSM to explicitly incorporate structural assumptions
and learn complex patterns from raw time series data. This model
computes the joint distribution over the prediction range for each time
series analytically based on a globally shared mapping derived from the
covariate vectors associated with each time series. The RNN is needed
to parametrize the mapping from covariates to the SSM parameters. It
is stated that this method allows model interpretability, can exploit as-
sumptions about temporal smoothness, and can be seamlessly scalable
to high-dimensional datasets.

A DeepTCN that employs a dilated causal CNN to capture the
temporal dependences of multiple related time series was presented
in [18]. The novelty of this model is a residual block designed to learn
the complex patterns within and across series from past observations
and exogenous covariates. The framework includes parametric and
nonparametric variants that learn uncertainty estimation by predicting
the parameters of hypothetical data distribution or generating quantile
forecasts.

DFM-RF represent a local–global method that relies on the combi-
nation of individual and generic time series properties for multivariate
forecasting [10]. This method adopts deep dynamic factors to extract
global nonlinear patterns and probabilistic graphical models to capture
local random effects. This model with one factor and AR inputs, with-
out random effects and automatically estimated scales of time series,
reduces to DeepAR.

Deep global local forecaster (DeepGLO) is another example of local–
global methods [42]. To capture global nonlinear dependences, this
method uses temporal convolution network (TCN) for the regulariza-
tion of the Matrix Factorization model (TCN-MF) that represents each
of the original time series as a linear combination of a smaller number
of basis time series. The output of TCN-MF is fed as input covariates
4
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to another TCN along with the past values of the local time series and
associated covariates to make the final prediction. Moreover, a simple
initialization scheme for TCN that dispenses a priori normalization was
introduced to handle scale variation of high-dimensional time series
data.

A time-variant deep feed-forward neural network architecture for
multi-step-ahead time-series forecasting (ForecastNet) [47] is a model
that addresses the time-invariance problem of RNN and CNN models.
The model produced good results against state-of-the-art models, such
as, DeepAR and DeepTCN. However, the evaluation was conducted
using univariate time series [47].

3. Methodology

3.1. Problem formulation

First, the probabilistic forecasting problem for multivariate time
series is formulated. Given a trained model 𝑓 𝑊̂ (⋅) with fitted param-
ters 𝑊̂ and a set of fully observed time series 𝒀 = {𝒚(𝑖)}𝑁𝑖=1 with 𝑁
nivariate series 𝒚(𝑖) ∈ R𝐷 where 𝐷 is the series dimension, the aim is to

predict the conditional distribution of the future time series 𝒚̂(𝑖)(𝑡+1)∶(𝑡+ℎ)
or 𝑖 = 1,…𝑁 :

P
(

𝒚̂(𝑖)(𝑡+1)∶(𝑡+ℎ)|𝒚
(𝑖)
1∶𝑡,𝑿

(𝑖)
1∶𝑡,𝑿

(𝑖)
(𝑡+1)∶(𝑡+ℎ), 𝑊̂

)

, (1)

where ℎ ∈ N+ is a forecast horizon, 𝑡 is a current time stamp, 𝒚(𝑖)1∶𝑡
are historical values of the 𝑖th series, and 𝑿(𝑖)

1∶𝑡 and 𝑿(𝑖)
(𝑡+1)∶(𝑡+ℎ) are the

ptional associated covariate vectors related to the past or future. The
orecast horizons are selected based on the needs of the power system
pplications for day-ahead dispatch in response to the results of the
holesale market (36 h ahead) and the consequent correction of the

ystem dispatch (3, 6, 12, and 24 h ahead) during the delivery period
n the intraday market. Note, however, that the error estimation for the
ay-ahead forecasts is normally done only for 24 h of the next day, but
n our case, the forecast errors at all 36 h are estimated.
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Fig. 1. Visualization of the structures of the selected methods: DeepAR (a), DeepTCN (b), DSANet (c), and LSTNet (d). ReLU activation functions are indicated by a gray curve
symbol and the dropout layers by the checkerboard pattern. The abbreviations are explained in the text.
3.2. Methods

The DeepAR, DeepTCN, LSTNet, and DSANet models were selected
for the empirical study to examine the recent advances in global DL
models that have achieved notable results in the forecasting of multi-
variate time series. These models were selected because they include
most of the trends in multivariate forecasting, and at the same time,
are diverse for potential combinations of approaches. In particular,
the LSTNet and DSANet models belong to the class of many-to-one
models that predict one value that is at the horizon distance from
an input sequence, whereas DeepAR and DeepTCN are many-to-many
models predicting a sequence of a horizon length ahead given the input
sequence. Moreover, the use of exogenous variables is also different:
the DeepAR and DeepTCN models have categorical, calendar, and time
variables, whereas LSTNet and DSANet do not use them by default.

Fig. 1 presents high-level schemes of the layers used in the models.
The same colors are used to indicate similar layers and their compo-
nents in the different models. DeepAR consists of multiple layers of
long short-term memory (LSTM) components where the outputs are
fed into two linear layers, one for determining the mean and the other
for determining the standard deviation of the time series. In the case
of standard deviation, the linear layer is fed into a SoftPlus layer to
ensure positive values. The means and standard deviations are then the
input to a Gaussian likelihood model that is used to generate samples.
DeepAR with three LSTM layers is shown in Fig. 1a, where the output
layer can be seen as the input for the likelihood model. The inputs for
the model are time series values until 𝑡−1, the covariates at time 𝑡, and
the time series index that is fed into the embedding layer. The output
5

of the embedding layer is then concatenated (CAT) with the time series
values and covariates and fed into LSTM layers.

Fig. 1b consists of two residual blocks, encoder and decoder, and
batch normalization, dropout, and linear layers for determining quan-
tile outputs q10, q50, and q90 (i.e., for 0.1, 0.5, and 0.9 quantiles)
of the DeepTCN model. The encoder residual block consists of dilated
convolution layers whose output is fed into the batch normalization
layers, where from the first batch normalization layer the output is fed
through the ReLU activation function. The batch normalization layers
are aimed at providing a stable distribution of activation values during
the training [48]. This enables faster convergence and shortens the
training process of the model. The output of the residual block is fed
into the next residual block or to the decoder residual block in the case
of the last encoder residual block. The decoder residual block takes two
inputs, the future covariates and the output from the encoder residual
block. It consists of linear layers and batch normalization layers, where
the output from the first batch normalization layer is fed through the
ReLU activation function. The output of the batch normalization layer
is summed with the concatenated future covariates and the encoder
output and fed through ReLU. The output from the decoder residual
block after the ReLU is fed into batch normalization, dropout, and
finally linear layers, which then provide the quantile outputs of the
model.

The LSTNet model is presented in Fig. 1d. Time series until 𝑡 − 1
are fed into the convolutional and linear layers. The convolution layer
is followed by the dropout and gated recurrent unit (GRU) layers.
The output from GRU goes through the ReLU activation followed by
a flattening operation, after which dropout is done. The dropped-out
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Table 2
The details of the datasets.

Dataset Electricity Open power system

Number of series 321 183
Length 26,304 25,560
Domain R+ R
Granularity Hourly Hourly

results are then fed into the linear layer. The final output of the model
is calculated as a sum of the output from the linear layer and the output
of the AR/linear layer. DSANet can be seen as an evolution of the
LSTNet model, and the similarities between LSTNet and DSANet can
be seen in Figs. 1c and 1d. GRU with ReLU and the flatten layers of the
LSTNet layers are replaced with linear layers and encoder layers that
consist of self-attention and positionwise feed-forward neural network
(FFNN) layers in the DSANet model. Moreover, the DSANet model uses
global and local temporal convolutions, which are aimed to capture
both long- and short-term temporal patterns. Furthermore, global and
local convolutions are fed into the self-attention layers, indicated as
encoder layers in Fig. 1c, which aim to identify the dependences
between different series. Both LSTNet and DSANet take only time series
values as inputs without including any future covariates by default.
Unlike the output of the probabilistic many-to-many models DeepAR
and DeepTCN, the outputs of these models are single point values at a
horizon away from the time 𝑡.

The LSTNet and DSANet models are not designed to produce proba-
ilistic forecasts. Therefore, a probabilistic interpretation of dropout is
pplied to obtain an approximate variational distribution representing
ncertainty estimates [20]. For the DeepTCN, a nonparametric model
hat predicts the quantiles is used, and it is referred to as TCN-quantile
n [18].

.2.1. Benchmarks
We use two similar-day techniques as the trivial benchmark meth-

ds and denote these benchmarks by Naïve-1 and Naïve-2:

𝑦̂(𝑖),𝑁𝑎𝑖𝑣𝑒−1
(𝑡+ℎ) = 𝑦(𝑖)(𝑡+ℎ−𝑑), (2)

𝑦̂(𝑖),𝑁𝑎𝑖𝑣𝑒−2
(𝑡+ℎ) =

⎧

⎪

⎨

⎪

⎩

𝑦(𝑖)(𝑡+ℎ−𝑑), if Tue (ℎ ≤ 24), Wed, Thu, and Fri,

𝑦(𝑖)(𝑡+ℎ−𝑑), if Sat, Sun, Mon or Tue (ℎ > 24),
(3)

where offset 𝑑 = 24 if ℎ ≤ 24 and 𝑑 = 48 if ℎ > 24. We assume that the
first model is more relevant for solar and wind time series, whereas
the second is primarily for load and price time series. The forecast
uncertainty of the persistence models is obtained using a historical
(post-hoc) simulation that consists of computing sample quantiles of the
empirical distribution of model residuals [49]. Here, we use a weekly
(𝑡−168) rolling window of naïve model residuals prior to the prediction
time 𝑡, i.e, 𝒚(𝑖)(𝑡−168)∶(𝑡) − 𝒚̂(𝑖)(𝑡−168)∶(𝑡).

A deep FFNN modeled in GluonTS [51] serves as a benchmark
method for univariate DL forecasting. The model consists of two ReLU
layers with 40 hidden neurons in each and is trained with a batch
size of 32 to fit a Gaussian distribution. The probabilistic forecasts are
obtained by sampling the quantiles of the output distribution.

3.2.2. Experiment details
All DL models are trained for the horizons with the early stopping

criterion being equal to 25 epochs and the maximum number of epochs
being set to 500. The selected epoch values correspond to the small-
est and largest epoch numbers used in the global DL models under
examination.
6

Fig. 2. Geolocations of the variables in the preprocessed open power system dataset.
The geolocations are specified with ISO 3166 area code or name of control area or
bidding zone [50].

3.3. Data

In this study, two real-world datasets related to different granular-
ities of power systems and consisting of homogeneous and heteroge-
neous time series were taken for the comparison. The statistics of these
datasets are presented in Table 2. The datasets and the tested DL models
are publicly available.1

The electricity dataset has already been used in most of the
models under examination, except DSANet. However, it is impossible
to compare the performance of the models on this dataset because
of the different preprocessing of the data and error metric. Here, the
modification of this dataset2 used in [16] is employed that has a
reduced dimensionality as a result of the removal of the time range
and the customers with a significant share of zero values. This version
has hourly consumption values in kWh for 321 customers for the time
period from 2012 to 2014. As in the initial models, the same split
principles were followed for the dataset, such as 60% for training, 20%
for validation, and 20% (5256 samples per series) for out-of-sample
(OOS) testing. The testing samples have a sufficient size covering
several seasonal, monthly, and diurnal patterns for the time period from
summer to wintertime.

The open power system dataset represents the data originating from
he European market bidding zones. This dataset contains a diverse mix
f time series, namely electricity consumption, market prices, and wind
nd solar power generation with hourly resolution from January 2015
o November 2017 [50]. The consumption and generation variables
re given in MW, and the prices in euro or pound sterling. The split
ercentages for this dataset are 70%, 15%, and 15% (3816 samples per
eries). The initial dataset was preprocessed by removing the capacity,
orecast, and profile data, as well as the series whose percentage of
issing values exceeds 5% for the defined time period. As a result, the
ata consist of 183 variables, where 59 are related to load, 31 to price,
7 to onshore and offshore wind, and 36 to solar. The geolocations of
he variables in the dataset are illustrated in Fig. 2. The illustration

1 https://github.com/aleksei-mashlakov/multivariate-deep-learning.
2 https://github.com/laiguokun/multivariate-time-series-data.

https://github.com/aleksei-mashlakov/multivariate-deep-learning
https://github.com/laiguokun/multivariate-time-series-data
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Fig. 3. Autocorrelations of the time series in the open power system dataset. A
presence (absence) of repetitive pattern indicates seasonality (randomness) in the series.

suggests that the dataset provides good grounds for the spatial load
dependences represented in almost all the bidding zones. Similarly, the
price variables are densely located in the Italian bidding zones and
in the Nordic countries, and solar variables are common in Southern
Europe and offshore wind in the north.

In order to examine the time-varying properties of variables in the
open power system dataset, autocorrelation graphs are shown for the
related time series fields in Fig. 3. The autocorrelation graph of the
electricity dataset is available in [16] and shows clear short-term
daily (24 h) and long-term weekly (168 h) seasonality. In the open
power system dataset, a clear serial correlation with daily and weekly
patterns can be observed in the Load and Price variables. However,
only a daily pattern with a steadily decreasing trend can be seen in
Solar and no repetitive patterns in Wind, which suggests about the high
randomness of the wind data with profound short-term dependences.
These observations can indicate possible challenges in wind forecasting
and an expectation of better results for the other variables and are
revised again in Section 4.

To support the idea of the existence of a spatial dependence of time
series at different zones in power systems, the empirical covariance ma-
trices of the datasets are visualized in Fig. 4. According to Fig. 4a, there
are mostly positive correlations between the consumption patterns of
households in the electricity dataset. In particular, at least two large
groups of the first 80 and the last 190 households have significant
correlations. For the open power system dataset shown in Fig. 4b with
random variables from different subfields, the correlations vary within
and between the subfields. It is to be noted that there are correlations
between the Load and Price variables, whereas such correlations are
absent between Price and renewable generation. This fact demonstrates
the higher influence of Load on the electricity market clearing price and
yet, low levels of renewables in the generation mix of the European
bidding zones. Moreover, the red squares within Wind and Price show
the probable spatial closeness of several bidding zones.

The selected datasets cover a wide range of use cases for the po-
tential application of probabilistic multivariate forecasting methods by
system operators and electricity market participants. For example, the
electricity dataset serves the needs of system operators and retailers.
The system operators can produce probabilistic load forecasting at
multiple distribution levels and grid nodes and detect technical prob-
lems, such as congestion in the electrical grid in advance. For retailers,
the multivariate time series forecasting can provide more accurate
descriptions of the behavioral patterns on thousands of customers
and make better tariff proposals. In contrast, the open power system
dataset is a good reference for operations at lower granularity levels
in power systems. For the business of aggregators, these methods are
7

Fig. 4. Correlation matrix of time series in the electricity (a) and open power system
(b) datasets. Red to blue colors represent the highest to the lowest correlations.

useful to precisely take into account the production of the renewables-
based virtual power plants with multiple sources in the day-ahead and
intraday energy markets. Furthermore, such a forecasting procedure
can be used to balance renewables by leveraging the use of cross-border
interconnections with suitable flexible power plants.

3.4. Evaluation metric

The model forecasts are assessed in accordance with the recom-
mended practices of renewable energy forecasting [52], i.e., using
point and probabilistic forecast numerical metrics and formal statistical
tests. The point forecast metrics evaluate the predictive accuracy of
forecasting the conditional mean of the series per horizon, whereas
the probabilistic forecast metrics estimate the model performance in
compliance with the paradigm of ‘maximizing sharpness subject to
reliability’ [11]. Finally, the formal statistical tests are applied to verify
the statistical consistency between the performance difference in the
results of point and probabilistic forecasting.

3.4.1. Point forecasting
The evaluation metric for point forecasting is normalized by the

sum of actual time series values to enable a fair comparison of multiple
series. It consists of ND and NRMSE. For the given set of time series 𝒀
and the corresponding predictions 𝒀̂ , the metric is defined as follows:

ND =
∑

𝑖,𝑡 |𝑦
(𝑖)
𝑡 − 𝑦̂(𝑖)𝑡 |

∑

𝑖,𝑡 |𝑦
(𝑖)
𝑡 |

,

NRMSE =

√

1
𝑁

∑

𝑖,𝑡(𝑦
(𝑖)
𝑡 − 𝑦̂(𝑖)𝑡 )2

1
𝑁

∑

𝑖,𝑡 |𝑦
(𝑖)
𝑡 |

,

(4)

where 𝑦(𝑖)𝑡 is the true value of the series 𝑖 at the time step 𝑡, 𝑦̂(𝑖)𝑡 is the
corresponding prediction value, and 𝑁 is the number of all points in
the testing periods.

To evaluate a statistical difference in the accuracy of model point
forecasts from each other, we conduct a Diebold–Mariano test [53].
Given that 𝐿𝑡(𝑦

(𝑖)
𝑡 , 𝑦̂(𝑖)𝑡 ) is an arbitrary forecast loss function of the

observation and prediction at time 𝑡, the idea of the test is to compute
the difference between the forecast scores of the pair of models 𝐴 and
𝐵:

𝛥𝐴,𝐵
𝑡 = 𝐿𝐴

𝑡 (𝑦
(𝑖)
𝑡 , 𝑦̂(𝑖)𝑡 ) − 𝐿𝐵

𝑡 (𝑦
(𝑖)
𝑡 , 𝑦̂(𝑖)𝑡 ), (5)

and to perform an asymptotic z-test for the null hypothesis that the
expected forecast error is equal and the mean of differential loss series
is zero E(𝛥𝐴,𝐵

𝑡 ) = 0 ∀𝑡, i.e., that there is no statistically significant
difference in the accuracy of two competing forecasts. Then, under the
assumptions of covariance stationarity of loss differential series, the
statistic of the test is deduced from the asymptotically standard normal
distribution as follows:

DM𝐴,𝐵 =
√

𝑀
𝜇̂𝛥𝐴,𝐵 , (6)

𝜎̂𝛥𝐴,𝐵
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where 𝜇̂𝛥𝐴,𝐵 and 𝜎̂𝛥𝐴,𝐵 are the sample mean and the standard deviation
of 𝛥𝐴,𝐵 , and 𝑀 is the length of OOS period.

Two one-sided DM tests are conducted at the 5% significance level
𝑝 for the forecast series of each horizon: (i) a standard test with the
null hypothesis 𝐻0 ∶ E(𝛥𝐴,𝐵

𝑡 ) < 0, i.e., the forecasts of the model 𝐵
are more accurate than those by the model 𝐴, and (ii) the reverse null
𝐻𝑅

0 ∶ E(𝛥𝐴,𝐵
𝑡 ) ≥ 0, i.e., the forecasts of the model 𝐵 are less accurate

than those by the model 𝐴. If the 𝑝-value of the test is lower than
the significance threshold, we reject the null hypothesis in favor of the
alternative. As loss functions 𝐿𝑡(⋅), we use the above-mentioned ND and
NRMSE metrics leading to the multivariate variant of standard DM tests
and assume that the loss differential series is covariance stationary.

3.4.2. Probabilistic forecasting
The performance of the probabilistic forecasting is quantitatively

evaluated based on the reliability and sharpness criteria. The relia-
bility (also called calibration or unbiasedness) validates the statistical
consistency between the distributional forecasts and the observations,
whereas the sharpness measures the concentration of the predictive
distributions.

The reliability is typically assessed by the coverage rate of the PI
using a ‘hit and violation’ indicator 𝐼 (𝑖)𝑡 :

𝐼 (𝑖)𝑡 =

{

1, 𝑦(𝑖)𝑡 ∈ [𝐿̂(𝑖)
𝑡 , 𝑈̂ (𝑖)

𝑡 ] → ‘hit’,

0, 𝑦(𝑖)𝑡 ∉ [𝐿̂(𝑖)
𝑡 , 𝑈̂ (𝑖)

𝑡 ] → ‘miss’ (violation),
(7)

here 𝐿̂(𝑖)
𝑡 and 𝑈̂ (𝑖)

𝑡 are the lower and upper bounds of PI for the series
at time 𝑡. These bounds of PI with a nominal coverage rate 𝑐 and

onfidence level 𝛼 can be described by the lower (i.e, 𝜏 = 𝛼∕2) and
upper (i.e, 𝜏 = 1−𝛼∕2) quantile. That means that for the PI, the nominal
overage should be equal to P(𝑦(𝑖)𝑡 ∈ [𝑦̂𝜏,(𝑖)𝑡 , 𝑦̂𝜏,(𝑖)𝑡 ]) = 1 − 𝛼 = 𝑐, i.e., the
ealized value is expected to be within the predicted range 100 ⋅ 𝑐 %
f the time. For one-sided PI specified by an individual quantile 𝜏,
.e., [−∞, 𝑦̂𝜏,(𝑖)𝑡 ], the realized value is anticipated to be lower than the
redicted quantile 𝜏 in 100 ⋅ 𝜏 % of the cases.

Given the sequence of {𝐼 (𝑖)𝑡 }𝑇𝑡=1, the prediction interval coverage
robability (PICP) is found as follows:

ICP = 1
𝑁

∑

𝑖,𝑡
𝐼 (𝑖)𝑡 , (8)

whereas the mismatch of the empirical coverage with the prediction in-
terval nominal coverage (PINC) is evaluated using the average coverage
error (ACE):

ACE = PICP − PINC. (9)

Generally, the closer the empirical coverage is to the nominal rate, the
better.

The coverage rate is formally validated by conditional coverage
(CC) Christoffersen tests [54] that assess an unconditional coverage
(UC) and independence hypothesis by LR evaluation procedures.

The unconditional coverage test, initially developed by Kupiec [55],
tests the null hypothesis that the nominal coverage rate is equal to the
empirical 𝐻0 ∶ E(𝑐) = E(𝜋) based on the total number of violations and
ignoring the order of the ‘hits’ and ‘misses’:

LRUC = −2 log
{ (1 − 𝑐)𝑛0 (𝑐)𝑛1
(1 − 𝜋)𝑛0 (𝜋)𝑛1

} asymp.
∼ 𝜒2(1), (10)

where 𝜋 = 𝑛1∕(𝑛0 + 𝑛1) is the percentage of hits, 𝑛0 and 𝑛1 being the
umber of ones and zeros in the indicator 𝐼 (𝑖)𝑡 series. The null hypoth-
sis is rejected if the actual fraction of PICP violations is statistically
ifferent than 𝛼.

The independence test validates the hypothesis of an absence of the
irst-order dependence in the violation sequence, i.e., the violations
ust be distributed independently, based on the estimation of the

irst-order Markov chain model, and it is defined as follows:

RIND = −2 log
{

(1−𝜋2)𝑛00+𝑛10 (𝜋2)𝑛01+𝑛11
𝑛 𝑛01 𝑛 𝑛11

} asymp.
∼ 𝜒2(1), (11)
8

(1−𝜋01) 00𝜋01 (1−𝜋11) 10𝜋11
b

Table 3
Details of the hyperparameter search space.

Parameter Search space Stochastic expression

Hidden units 25, 26, 27, 28 Quantized uniform
52⋅ [21, 22, 23]

Batch size 26, 27, 28, 29, 210 Quantized uniform
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 Quantized uniform
Learning rate 10−4, 10−3 , 10−2 Quantized uniform

5⋅ [10−4, 10−3]

where 𝜋2 = (𝑛01 + 𝑛11)∕(𝑛00 + 𝑛01 + 𝑛10 + 𝑛11), 𝑛𝑖𝑗 is the number of
observations with value 𝑖 followed by 𝑗 and 𝑛𝑖𝑗 = P(𝐼 (𝑖)𝑡 = 𝑗|𝐼 (𝑖)𝑡−1 = 𝑖).
The conditional coverage test is then numerically related with the LR
test statistics of UC and the independence tests as their sum LRCC =
LRUC + LRIND

asymp.
∼ 𝜒2(2), if we condition on the first observation.

We conduct the Christoffersen tests for 80% PI (i.e., 𝑐 = 0.8, 𝛼 = 0.2,
𝜏 = 0.1, 𝜏 = 0.9) of the last 24 h of the day-ahead forecast separately
for each hour and the univariate time series. Then, the results of the
LR statistics are presented as mean values per a set of multivariate time
series.

The sharpness is evaluated with a bidirectional wQL, 𝜏 ∈ (0,1),
denoted as quantile risk in [9]:

wQL𝜏 (𝒀 , 𝒀̂ ) = 2
∑

𝑖,𝑡 P𝜏 (𝑦
(𝑖)
𝑡 , 𝑦̂(𝑖)𝑡 )

∑

𝑖,𝑡 |𝑦
(𝑖)
𝑡 |

, (12)

here the quantile loss per time index is defined as:

𝜏 (𝑦
(𝑖)
𝑡 , 𝑦̂(𝑖)𝑡 ) =

{

𝜏(𝑦(𝑖)𝑡 − 𝑦̂(𝑖)𝑡 ), if 𝑦(𝑖)𝑡 > 𝑦̂(𝑖)𝑡
(1 − 𝜏)(𝑦̂(𝑖)𝑡 − 𝑦(𝑖)𝑡 ), otherwise.

(13)

or the statistical validation of the wQL metric, we apply Diebold–
ariano tests with the arrangements described for the accuracy evalu-

tion (see Section 3.4.1).
For more details about the evaluation of probabilistic forecasting,

he reader is referred to [56]. In this study, only 0.1 and 0.9 quan-
iles were used for the wQL evaluation as it is done in the reference
odels [9,18]. These metrics were selected because they are common

n DL research and can provide full-stack evaluation of the model
eneralization abilities for deterministic and probabilistic multivariate
orecasts. For all the error metrics, lower values indicate a better model
erformance.

.5. Hyperparameter optimization

In the selected models, the optimal values for hyperparameters were
hosen based on a grid or manual search, but no information about the
ffects of these parameters on the model performance was given. The
yperparameter optimization in this study aims to reveal the sensitivity
f the DL models to the most common hyperparameters and investigate
heir optimal values in a day-ahead forecasting scenario. This experi-
ent was conducted by sequential model-based optimization with the
ree Parzen Estimator algorithm that selects the next hyperparameters
ased on Bayesian reasoning [57].

The search space of the selected hyperparameters is presented in
able 3 and based on the outer intersection of the common hyper-
arameters initially used for the grid search or manual tuning of the
odels. The hyperparameters include the number of hidden units in

he recurrent or dense layers, batch size, dropout rate, and learning
ate. The number of hidden units is controlled in the dense layers
ith DeepTCN and DSANet and in the recurrent layers in the case of
eepAR and LSTNet. Moreover, the maximum batch size was limited

o 28 for the DSANet model owing to GPU memory issues, but batch
izes 24 and 25 were added to the search space in order to keep the
earch space more consistent with the other models. The effect of input
equence length on prediction accuracy was ignored using the look-

ack window of 168 h for all the models. The rest of the parameters
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were not fitted and used as default values for the datasets with the same
resolution and properties in the corresponding models to preserve the
model architecture.

The number of iterations for the sequential optimization was limited
to 100 because of its high computational requirements [58]. Compared
with the training conditions, the maximum number of epochs and
early stopping criteria were decreased by a factor of five, i.e., to
100 and 5. Moreover, the dataset was reduced to 11% for training
and about 4% for validation and testing. The loss function for the
sequential optimization is defined by the best mean absolute error
obtained on the validation set. The number of epochs, dataset length,
and stopping criteria were decreased with the intention to obtain
close-to-optimal values under lower computation requirements. The
models during the hyperparameter optimization were examined from
the viewpoints of run-time efficiency by total simulation time, mean
and standard deviation of the GPU memory, convergence rate, and
estimated energy consumption. The simulation time measures the wall-
clock time of dataset preprocessing and model training and evaluation
for all iterations. The convergence rate is equal to the average number
of epochs required to find the best solution, after which the early
stopping criterion is reached. The energy consumption is estimated as
the maximum power of the peripheral component interconnect express
(PCIe) card (300 W) multiplied by the simulation time (h) and the
proportion of mean GPU memory from the maximum GPU memory (32
GiB).

3.6. Model sensitivity

Besides the hyperparameter tuning, we also studied the model
sensitivity to exogenous variables and fieldwise split based on the day-
ahead forecasting problem with the open power system dataset. The
ormer experiment consisted of removing or adding the calendar and
ime exogenous variables from and to the models. For the DeepAR
nd DeepTCN models with these variables used by default, we left
nly categorical variables, but removed the calendar and time features.
or LSTNet and DSANet, the exogenous variables were added as the
nput sequences that were then retrieved from the error analysis. The
dea of fieldwise split experiment was to validate the hypothesis that
he DL models can extract the correlations of the time series from the
elated fields of power system operations, e.g., the total load and price
rom the same market bidding area. This experiment was conducted
y splitting the open power system dataset in a fieldwise manner
i.e., load, price, wind, and solar fields), and training and validating
he models separately on each of the obtained subsets of data.

.7. Experiment environment

The experiments were executed on a node of an Intel Xeon proces-
or running at 2.1 GHz (Xeon Gold 6230) and with 4 NVIDIA Tesla
100-SXM2 GPUs containing 32 GiB of memory each.

. Empirical results

.1. Accuracy, reliability, and sharpness assessment

The test results for the assessment of the average model accuracy
nd sharpness of the electricity and open power system datasets are
hown in Figs. 5a–5b with ND and NRMSE and weighted quantile loss
wQL10 and wQL90)3. The observations suggest that the best score
n ND with the electricity dataset is achieved by the local FFNN
odel. The other models (e.g., DSANet, DeepAR, and naïve bench-
arks) follow closely by, whereas LSTNet and DeepTCN constitute
group with the largest ND. The score distribution for the NRMSE

3 Numerical data of the experiment results is available in Appendix A.
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a

is more volatile with different winning methods for specific horizons
but still distinguishes two main groups with different performance. In
contrast to the ND metric, the Naïve-2 model has shifted to the worst
performing group, the DeepAR results have worsened, and the rest
generally remain unchanged. The sharpness evaluation of the model
forecasts repeated the ranks of model performances on NRMSE with
the exception of the DSANet model that demonstrated low-quality
sharpness for the lower (wQL10) and upper (wQL90) quantiles. Overall,
the models have more difficulties to forecasts the upper quantile of the
datsets.

With the open power system dataset, the best accuracy and sharp-
ness are demonstrated by DeepAR. Together with DeepTCN, these
models outperform all benchmarks, and in contrast to the previous
dataset, all DL models outperform the naïve benchmarks except in a
few cases for the 36 h ahead forecast horizon. The error variation and
wQL are weakly dependent on the time horizon in the electricity
dataset, whereas they are more strongly correlated with the open
power system dataset. For this dataset, the NRMSE values tended to be
lower than in the electricity dataset, which can be explained by the
different granularity levels of the datasets, where individual electricity
metering data have more rapid peak values. Overall, the poor LSTNet
and DSANet results in wQL in both datasets suggest that the risk of
uncertainty estimation obtained with the MC approximation tends to
be higher than with the other methods. In relation to the benchmarks
for both datasets, the larger was the forecast horizon, the closer was the
performance of the naïve models to the best performing models, and
the local FFNN performed well ranking first and third for the datasets,
respectively.

The test results were also examined separately for each of the vari-
able types in the open power system data in Figs. 5c–5f. The Load time
series were predicted with the highest accuracy and smallest quantile
risks at both quantiles. For example, DeepAR, as the best performing
model, achieved ND and wQL less than 4% and 2%, respectively, for
the 36 h ahead forecasts. Interestingly, the Naïve-2 model performed
generally very well and close to the DeepAR results for the 36 h forecast
horizon. For the Price series, the error amplitude was higher with the
best levels of accuracy and the quantile risk of 8%–10% and 4%–8%,
respectively, along the horizon. The level of forecast accuracy and
sharpness evaluation significantly deteriorated for renewable source
variables compared with the Price and Load series. The best point
forecast accuracy and sharpness for Solar time series forecasts was
shown by the DeepAR and DeepTCN models followed by FFNN. The
level of ND, and wQL varied between 8%–20% and 5%–13%. The
stochasticity of the Wind time series causes a rapid deterioration of
the forecast quality along the horizons, which can be the reason for
the higher error dependence with the forecast horizon. In particular,
the wQL varied from 6% to 28%, whereas ND varied from 8% to
35% along the forecast horizon. As it was assumed in Section 3.2.1,
the Naïve-1 benchmark performed better than Naïve-2 for renewable
generation forecasts. In general, the DL models demonstrated superior
performance for intraday forecasts of renewable generation over the
benchmark models. On the other hand, the advantages of DL models
for the Load and Price series were marginal. In addition, DeepTCN and
DSANet showed unstable results for the Price and Solar time series.

The results of empirical coverage for one-sided prediction intervals
of 0.1 and 0.9 quantiles on the electricity and open power system
datasets are illustrated in Fig. 6 with the average coverage error (ACE,
see Section 3.4.2) for all forecast horizons. In the figure, the error is
indicated by red color with respect to the 0.1 and 0.9 quantiles (marked
with a dashed line) that cover 80% PI (marked in gray). For one-sided
intervals, ACE is negative when the quantile forecasts are biased lower
than the required quantile. In this case, the red area is located to the
left from the corresponding quantile dashed line and to the right for
the positive ACE.

Nearly all the models yield a small ACE for the whole electricity

nd open power system datasets except the LSTNet and DSANet models
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Fig. 5. Best point forecast losses and quantile 𝜏-risk achieved by the models for the electricity (a) and open power system (b) datasets as well as for the Load (c), Price (d),
Wind (e), and Solar (f) related fields of the open power system dataset. ND: normalized deviation, NRMSE: normalized root mean square error. QL10 and QL90: quantile risks at
0.1 and 0.9 quantiles, respectively. The lower metric values indicate a better model performance.
with narrow and overly narrow PIs, respectively, which were obtained
by the MC dropout. In Figs. 6c–6f, we can observe the model reliability
per a particular variable, which excludes complementary coverage com-
pensation by forecasts of different variables. For example, the quantile
forecasts of FFNN have wider coverage levels than the nominal for
Load, but narrower than the nominal for Price. The LSTNet model
has generally narrow prediction intervals and, especially, difficulties in
capturing peak values of Price and Load, which leads to a large negative
ACE for the upper quantile of these variables. The coverage of DSANet
has also a very large ACE, and, together with LSTNet, these models
underestimate the uncertainty and the least reliable for probabilistic
forecasting. DeepTCN has generally a small ACE, but the sign of this
error varies per variable and horizon supporting the observations above
about the quantile loss. Surprisingly, the naïve benchmarks have the
lowest ACE among all the models, but DeepAR and FFNN follow closely
by.
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4.2. Tests of statistical significance

In Fig. 7, we summarize the results of the DM tests for point (ND and
NRMSE) and probabilistic (wQL) forecast metrics with a binary heat
map. The map is divided into model areas, where each area contains bi-
nary indicators per a particular horizon. A red (blue) square in the map
indicates that forecasts of a model on the 𝑥-axis are significantly better
(worse) than the forecasts of a model on the 𝑦-axis for a particular
horizon. In other words, if in a given area each diagonal square is red,
then the forecasts of models on the 𝑥-axis are significantly better than
those of the model on the 𝑦-axis for all horizons. For example, in Fig. 7b,
the DeepAR model has columns with areas consisting of diagonal red
squares, which indicates that the model is significantly better than any
other model for each metric. In contrast, the models with blue columns
are significantly worse, e.g., DeepTCN for ND in Fig. 7a. If the square
is absent in the area, it indicates that the forecasts are not significantly
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Fig. 6. Results of empirical coverage on the electricity (a) and open power system (b) datasets per particular horizons (from bottom to top: 3, 6, 12, 24, and 36 h). The red
area corresponds to the average coverage error (ACE) from 0.1 and 0.9 quantiles, whereas the gray area corresponds to the nominal coverage of the 80% prediction interval (PI)
covered by these quantiles.
different for a particular horizon. Similarly, the diagonal line is empty
because it concerns the same model on both axes. The lower and upper
triangles show the opposite performance as a result of the standard and
complementary hypothesis testing.

For the electricity dataset, the DM statistic suggests that the
forecasts of the FFNN model are significantly better than the forecasts
of all the other models for the wQL metric, whereas they have compa-
rable results for ND and NRMSE with the forecasts of the DSANet and
naïve models. Among the global DL models, the forecasts of DSANet
are ranked the first based on the ND and NRMSE metric, but they
perform significantly worse than the other model forecasts for wQL
loss. Interestingly, the forecasts produced by the FFNN and Naïve-1
benchmark models demonstrate higher point forecast accuracy and a
lower quantile risk than the forecasts of the global DL models with a
few exceptions in relation to the DeepAR and DSANet forecasts. The
DM results for the open power system dataset are more in favor of
the forecasts by the DL models. In particular, the DeepAR forecasts are
significantly better than the others in all cases, whereas the DeepTCN
forecasts are ranked second based on the accuracy metric, but have a
comparable quantile loss with the forecasts of the FFNN model. The
forecasts of DSANet and LSTNet are better than the naïve benchmarks
for intraday horizons, but fall short of the FFNN forecasts. Overall,
the results of statistical significance are in line with the assessment of
accuracy and sharpness in Section 4.1.

The results of the Christoffersen test on unconditional (LRUC) and
conditional (LRCC) LR statistics (see Section 3.4.2) for 80% PI of the
electricity and open power system datasets are presented in Fig. 8.
We first conducted the tests separately for each variable in the dataset
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and for each of the 24 h of the day-ahead (36 h ahead) forecast and
then presented the results as the mean of the LR statistics for all
variables. In the electricity dataset, the naïve benchmarks yield the
best unconditional coverage; see the green crosses and the light blue
pentagons in the top plot of Fig. 8a, by passing both the 1% and 5%
significance levels for all hours. DeepAR and FFNN demonstrate close
performance, but only FFNN passes the 1% level, whereas the mean
of DeepAR forecasts is slightly above this level. The rest of the DL
models (i.e., DeepTCN, LSTNet, and DSANet) fall short to reject the null
hypothesis. For the conditional coverage, the situation is mostly similar
with a minor difference in the performance of the DeepAR and FFNN
models that pass the 1% and 5% tests for certain horizons. Overall,
the LR statistics does not reveal any pattern along the hours. For
the open power system dataset, the naïve models remained the clear
leaders in both unconditional and conditional coverages. However, in
contrast to the previous dataset, none of the DL models managed to
pass the significance test for the UC. For the CC, DeepAR reached 1%
significance only for few hours, but DeepTCN and FFNN were close
to this level. The performance of LSTNet and DSANet remained the
worst among the models, whereas the DeepTCN model showed an
improvement in both statistics and came close to DeepAR and FFNN
for the CC. In contrast to the electricity dataset, the UC and CC of
several models showed the coverage pattern with a dip during the daily
hours.

4.3. Hyperparameter sensitivity

The search of sequential hyperparameter optimization for DeepAR,
DeepTCN, LSTNet, and DSANet is illustrated in Fig. 9 with kernel
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Fig. 7. Results of the conducted one-sided Diebold–Mariano tests at the 5% significance levels on the electricity (a) and open power system (b) datasets for point accuracy (ND
and NRMSE) and quantile risk (wQL) of 0.1 and 0.9 quantiles per particular (from left to right by diagonal: 3, 6, 12, 24, and 36 h) horizons. A red (blue) square indicates that
the forecasts of a model on the 𝑥-axis are significantly better (worse) than the forecasts of a model on the 𝑦-axis for a particular horizon, whereas an absence of square indicates
that the forecasts are not significantly different for a particular horizon.
Fig. 8. Results of the Christoffersen tests on unconditional (LRUC) and conditional (LRCC) LR statistics for the electricity (a) and open power system (b) datasets. The statistics
is obtained for day-ahead (36 h ahead) forecast of 80% prediction interval (PI) separately for each 24 h of the next day. The solid (dashed) horizontal lines represent the 1%
(5%) significance level of the appropriate 𝜒2 distribution. All the test values exceeding 20 are set to 20.
density estimation and linear regression. The gray areas represent the
estimated density of model hyperparameters based on the observed hy-
perparameter samples, and they are complemented by average values
of these samples indicated by a dashed line. The number of hidden
units (HU) has generally an increasing tendency with a few exceptions
(e.g., DeepTCN and LSTNet in the electricity and open power system
datasets, respectively), which is correlated with a decreasing dropout
rate (DR) in many cases (except DSANet). However, one would expect
positive correlation, i.e., more hidden units-higher dropout rate, as a
way to prevent overfitting. The learning rate has mostly a positive cor-
relation with the batch size, which can be seen as a measure to balance
the gradient update distance of different batch sizes. Overall, the NDs
demonstrated by the regression plots continuously decrease along the
iterations, validating the correctness of the selected hyperparameters
during the search.

The sensitivity of the hyperparameters to the ND of the models
is described in Table 4. The results suggest that the DSANet model
demonstrated more stable predictions compared with the other models,
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Table 4
Error sensitivity of the models.

Dataset DeepAR DeepTCN LSTNet DSANet

Electricity 0.26 ± 0.107 0.38 ± 0.260 0.21 ± 0.142 0.14 ± 0.020
Open power system 0.24 ± 0.099 0.32 ± 0.281 0.33 ± 0.141 0.16 ± 0.070

whereas DeepTCN had the highest sensitivity to the hyperparameters.
The results may also indicate that there are not enough examples in the
data for DeepAR, DeepTCN, and LSTNet for convergence. However, the
results of DSANet are more in line with the ones presented in Fig. 5b.

4.4. Run-time efficiency

The results of the run-time efficiencies of the models including
wall-clock simulation time, GPU memory usage, convergence rate, and
electricity consumption are presented in Tables 5 and 6. The dimen-
sionality of the dataset has almost a linear effect on the simulation
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Fig. 9. Results of sequential model hyperparameter optimization for the electricity (a) and open power system (b) datasets. The darker the gray area, the higher the estimated
kernel density of the model hyperparameters based on the observed samples, whose average is represented by the dashed line. ND: normalized deviation, BS: batch size, DR:
dropout rate, LR: learning rate, HU: hidden units, +: the best result.
Table 5
Run-time efficiency of models during hyperparameter optimization for the electricity
dataset.

Parameter DeepAR DeepTCN LSTNet DSANet

Simulation time, h:min 150:16 17:51 07:25 18:56
GPU memory, GiB 4.71 2.22 15.23 14.22
GPU memory, stdDev 1.06 0.22 0.98 2.24
Convergence rate, epochs

100
0.10 0.56 0.42 0.31

Energy consumption, Wh 6635 372 1059 2524

Table 6
Run-time efficiency of models during hyperparameter optimization for the open power
system dataset.

Parameter DeepAR DeepTCN LSTNet DSANet

Simulation time, h:min 80:55 09:04 05:30 11:05
GPU memory, GiB 4.49 2.01 9.76 8.22
GPU memory, stdDev 1.02 0.14 0.97 6.4
Convergence rate, epochs

100
0.09 0.47 0.44 0.17

Energy consumption, Wh 3406 171 503 854

time for the DeepAR and DeepTCN models and on the GPU usage of the
LSTNet model, whereas with DSANet there appears to be a linear effect
with both of them. DeepAR with a likelihood model has a significantly
reduced convergence rate compared with the quantile- and conditional-
mean-based DeepTCN, LSTNet, and DSANet models. Interestingly, the
most energy-consuming model consumes approximately up to 20 times
more energy than the least consuming model.

4.5. Effect of exogenous variables

The effect of exogenous variables (i.e., calendar and time) on the
accuracy and sharpness of forecasts in the open power system dataset
is visualized in Fig. 10a. DeepTCN appeared to be the most reliant on
exogenous variables, and the reliance was the most evident in the case
of solar power generation data. However, the results of DeepAR, LST-
Net, and DSANet were not affected that much. The reason for the low
influence on the results of at least the LSTNet and DSANet models can
be a method of integration of these calendar and time variables through
input time series. A higher influence on the forecasting performance
can be achieved if these variables are more comprehensively merged
into the model architectures.
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4.6. Cross-field dependence

The benefit of fieldwise prediction instead of simultaneously pre-
dicting the whole open power system data is visualized in Fig. 10b.
All the models benefited slightly from the fieldwise split in both the
point accuracy and the quantile loss, whereas DSANet had a substantial
gain in NRMSE but a loss in wQL10. Overall, the results indicated that
it is more beneficial to use the fieldwise split instead of predicting
with the whole data. This is in conflict with the initial hypothesis that
several time series from related fields can improve forecasting when
using cross-series dependences. However, there are a few exceptions:
for example, DeepAR would achieve better results for wind generation
and slightly better results for load prediction when using the whole
dataset. The results can be further verified if using the dataset from an
isolated power system with more closely coupled processes.

5. Discussion

5.1. Model performance

5.1.1. Accuracy
An analysis of the DL model point accuracy on the presented

datasets suggests that the performance of the studied architectures can
be data- or context-specific. In particular, the global DL models can
perform well on the homogeneous electricity dataset, e.g., DeepAR
and DSANet, but their feasible superiority is more evident on the
heterogeneous open power system dataset, e.g., DeepAR and DeepTCN.
We assume that the latter is possible if the global model truly enables
cross-learning of the dependences across multiple time series of the
dataset.

These results of global model performances in comparison with the
local benchmark model (FFNN) are in line with previous empirical
evaluations [59], suggesting that global models are superior over local
ones in forecasts for heterogeneous datasets, i.e., the global models can
generalize better for unrelated simple patterns, but the local models can
retrieve more complex patterns per similar series. However, the split-
ting experiment also slightly supports the more traditional assumption
that the global models offer benefits over local methods only when the
time series involve similar or related patterns.

Regarding the multihorizon forecast approaches, we investigated
two types of models, i.e., many-to-one (DSANet and DeepAR) and
many-to-many (DeepAR and DeepTCN). The results suggest that the
forecast models with the many-to-one approach generally perform
worse than the other. For example, DSANet has one of the lowest
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Fig. 10. Effect of time- and calendar-related exogenous variables (a) and fieldwise split (b) on losses in the open power system dataset. Negative values indicate that the results
are better with exogenous variables or fieldwise split, and positive values the opposite. PS: whole dataset, L: Load, P: Price, W: Wind, S: Solar.
accuracies for the open power system dataset but one of the best for
the electricity dataset, whereas LSTNet is the least accurate for
both (see Fig. 5). In theory, this difference in the performances of the
many-to-one models can be explained by the absence of a recursive
strategy in DSANet and its presence in LSTNet. The recursive strategy
can accumulate errors of previous steps along the forecast horizon and
make the overall accuracy worse. However, it is unlikely the case for
the experiments carried out in this study because the initial error levels
of LSTNet and DSANet in the open power system dataset are higher
than the best-performing competitive models. Therefore, potentially
other problems in the model architecture affect the performance and
should be studied in the future.

5.1.2. Reliability and sharpness
In the study, four methods of generating probabilistic forecasts by

the DL model were investigated: producing selected quantiles directly
by the DL model (DeepTCN), fitting the DL parameters of probability
distribution (DeepAR and FFNN), and applying ‘‘bootstrapping’’-based
MC dropout during the testing (LSTNet and DSANet). Moreover, a post-
hoc residual simulation based on the point forecast was conducted for
two naïve models.

The results suggest that the probability distribution and residual
simulation methods provide a statistically significant performance im-
provement in the reliability and sharpness of forecasts. On the other
hand, MC dropout probabilistic forecasts produce too narrow PIs,
whereas quantile forecasts are unable to reliably capture the distribu-
tion of several groups of series. Therefore, further work should be done
to investigate the reasons for these phenomena.

5.1.3. Run-time efficiency
The scalability of the DL models was questioned, and a linear

dependence of the dataset dimensionality with the simulation time
and the GPU resource usage was observed in some cases. Moreover,
a hypothesis of a higher computational time needed for more accurate
results can be partly supported with the results. Therefore, the choice
of the model is mostly affected by the application requirements for
users’ specific needs and data dimensionality, and the decision can be
prioritized based on the forecast accuracy, uncertainty risks, hardware
limitations, or a trade-off between these conditions.

5.2. Limitations and implications

The trustworthiness of the research results can be questioned by sev-
eral factors. For instance, although the length of OOS testing covered
half a year with summer–autumn–winter periods for both datasets, it is
less than the one-year OOS period recommended in the literature [52].
Moreover, the number of DL models and the number of datasets provide
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a sufficient view to the DL performance of the investigated models for
energy forecasting but cannot necessarily be generalized to other mod-
els. Furthermore, the hyperparameter tuning was implemented based
on a fraction of the datasets and only for a 36 h forecast horizon. This
could potentially lead to suboptimal model training and forecasting
results.

However, with respect to the present developments in the forecast-
ing domain in general, and energy forecasting in particular, this study
follows most of the state-of-the-art practices. For example, the study
meets several requirements introduced by the recent well-known M5
forecasting competition [60] and energy forecasting literature [52]: a
clearly defined application domain, assessing forecast uncertainty along
with the point forecast accuracy, well-recognized evaluation methods
with the assessment of their statistical significance, datasets with high-
frequency hourly data, and existing cross-correlations between the
multivariate series.

Moreover, the final results of the competition suggest that the
advanced global DL models can become mainstream methods dealing
with large datasets and motivate further research in this field [60].
Keeping in mind the data-specific performance of the investigated
DL models, more automated testing of global models is required to
progress the research, e.g., using open source libraries available in
the DL community, such as the modeling toolkit GluonTS [51]. To
support the reproducibility of the research, we share the code for the
modifications and experiment arrangements of the applied and already
publicly available DL models as well as publish the preprocessed open
power system dataset.

6. Conclusion

This study bridges the gap between the adoption of novel global
deep-learning-based models for probabilistic multivariate forecasting in
the deep learning community and the applicability of these methods
for energy forecasting. In particular, this work provides insights for the
academia, industry specialists, and practitioners into plausible levels of
forecast accuracy and uncertainty that can be achieved in this context
with the use of novel global deep learning models. Moreover, this study
provides a numerical quantification of challenges that such methods
have in terms of computational efficiency, hyperparameter sensitivity,
and influence of exogenous and field-dependent variables.

In summary, the results suggest that a satisfactory level of accuracy
and uncertainty risk can be achieved by global deep learning models for
the forecasting of load, price, and solar time series exclusively based
on historical data, but additional exogenous information is required
to minimize the forecast loss of the more stochastic wind time series.
Moreover, in comparison with the local models, the empirical results
seem especially favorable for the applicability of these global models
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for intraday forecasts and heterogeneous datasets. Furthermore, the
results also indicate that with a large dataset where the fieldwise split
of the data is feasible, the results can be slightly improved by splitting.
In general, the addition of calendar and time exogenous variables
has a minor but mainly positive effect on the model performances. A
hyperparameter sensitivity test indicated that careful tuning or search
of good hyperparameters should be carried out when selecting the
model to be used to achieve the best results. These findings motivate
further exploration of global deep learning models for probabilistic
multivariate energy forecasting.

Interesting future research directions include integration of mul-
tivariate forecasts into decision-making under uncertainty risks, im-
provement of the deep learning models with privacy-preserving fed-
erated learning, and merger of numerical weather predictions into the
model architectures.
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