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Probabilistic Forecasting of Battery Energy Storage
State-of-Charge under Primary Frequency Control

Aleksei Mashlakov, Lasse Lensu, Arto Kaarna, Ville Tikka, and Samuli Honkapuro

Abstract— Multi-service market optimization of battery energy
storage system (BESS) requires assessing the forecasting uncer-
tainty arising from coupled resources and processes. For the
primary frequency control (PFC), which is one of the highest-
value applications of BESS, this uncertainty is linked to the
changes of BESS state-of-charge (SOC) under stochastic fre-
quency variations. In order to quantify this uncertainty, this
paper aims to exploit one of the recent achievements in the field
of deep learning, i.e. multi-attention recurrent neural network
(MARNN), for BESS SOC forecasting under PFC. Furthermore,
we extend the MARNN model for probabilistic forecasting with
a hybrid approach combining Mixture Density Networks and
Monte Carlo dropout that incorporate the uncertainties of the
data noise and the model parameters in the form of prediction
interval (PI). The performance of the model is studied on
BESS SOC datasets that are simulated based on real frequency
measurements from three European synchronous areas in Great
Britain, Continental Europe, and Northern Europe and validated
by three PI evaluation indexes. Compared with the state-of-the-
art quantile regression algorithms, the proposed hybrid model
performed well with respect to the coverage probability of PIs
for the different regulatory environments of the PFC.

Index Terms— Attention-based neural network, battery energy
storage system (BESS), frequency control, mixture density net-
works, Monte Carlo dropout, prediction intervals, probabilistic
forecasting, state-of-charge (SOC).

I. INTRODUCTION

BATTERY Energy Storage Systems (BESSs) are consid-
ered as one of the essential building blocks for a transi-

tion towards more sustainable and intelligent power systems.
A wide spectrum of system- or grid-oriented BESS appli-
cations [1] includes an integration of renewable generation,
energy arbitrage, local grid support, and system balancing,
just to name a few. A comprehensive management of these
applications enables more flexible, reliable, and resilient grid
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operation capable to handle growing system intermittency and
complexity caused by the increasing penetration of renewables
and distributed energy resources. It is expected that the costs of
stationary and mobile BESSs will continue falling triggering
more utility- and residential-scale BESS adoption at different
grid levels and for a variety of services [2], [3]. Consequently,
new business cases arise for sophisticated analysis and control
of BESSs and provoke a substantial body of research that aims
to optimize battery operation for boosting economic benefit
from all available revenue streams.

A simultaneous provision of multiple services is one of
the most common approaches in order to achieve maximum
profitability and return on investment from a standalone battery
storage. In most of the service combinations summarized
in [4], the value stacking from multiple revenue streams is
achieved by a service coupling with different requirements
such as combining power and energy intensive services, active
and reactive power services, or different service timescales.
A decision-making process for finding the optimal combina-
tion and capacity allocation across the benefits of multiple
services is naturally formulated as an optimization problem.
This optimization for BESSs is difficult because of complex
dependencies and uncertainties of different factors such as
market profitability, BESS operational costs, coupled resource
power output, etc. Therefore, the success of the BESS oper-
ational strategies is strongly dependent on the knowledge of
these uncertainties at multiple timescales.

The probabilistic forecasts are considered to be a robust tool
for the risk management and efficient decision making under
the presence of uncertainties [5]. These forecasts are quantified
in the form of prediction intervals (PIs), scenarios, density
functions, or probability distributions that allow assessing
the uncertainty in the forecasts. This approach facilitates the
limitations of traditional point forecasts that define only the
conditional mean of the signal and are restricted by very
limited information about the forecast uncertainty, as well
as sensitivity to forecast errors and unexpected events [6].
The increased popularity of the probabilistic forecasting in
comparison to point forecast highlighted in [7] is also seen
in an energy industry. Recent applications of the univariate
probabilistic forecasting methods in smart grids are focused on
the forecasting of electricity market prices [6], [8], renewable
power generation [9]–[11], and electricity load [12], [13].
Reviews of the methods for these applications can be found
in [7], [14]–[16].

The literature in relation to forecasting the behavior of
BESS state-of-charge (SOC) under frequency control is scarce
and restricted by forecasting of grid frequency [17], [18].
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The complexity of the BESS SOC forecasting incorporates
the stochastic nature of the power system frequency and the
absence of clear spatial information on large macrogrids that
could be used to support the forecasting. Moreover, the fore-
casting algorithm should be capable of achieving acceptable
prediction performance in different regulatory environments.
Consequently, the forecast errors belong to the challenges, and
estimation of these errors is infeasible to achieve with point
forecasts.

The goal of this study is to implement and analyze the
probabilistic forecasting to assess the uncertainty of BESS
SOC under the primary frequency control (PFC). The results
should complement the published work on model predic-
tive optimization of BESS economic dispatch for a provi-
sion of multiple services. The basis for the forecasting is a
multi-attention recurrent neural network (MARNN), a deep
learning framework designed to capture the most relevant
contextual information for sequence forecasting. Moreover,
this framework is extended to realize a variational MARNN
for providing a robust probabilistic forecast. This extension
is implemented with Mixture Density Networkss (MDNs) and
Monte Carlo dropout (MCD) allowing to quantify the forecasts
in the form of the PIs based on the point forecasting and the
error obtained by the uncertainties in the inherent noise in
the data and the model parameters. In order to evaluate the
performance of this hybrid probabilistic forecasting model for
different regulatory environments of PFC, it is tested on BESS
SOC datasets simulated based on real power grid frequency
measurements from three European synchronous areas in
Great Britain (GB) [19], Continental Europe (CE) [20], and
Northern Europe (NE) [21], respectively.

The contributions of this study are described as follows:
(1) An extension of MARNN to implement the variational

MARNN with a hybrid approach combining the MDN and
MCD, incorporating both aleatoric and epistemic uncertainties.
These approaches are appealing due to their scalability and
applicability to any existing neural networks;

(2) Novel application of the variational MARNN for proba-
bilistic forecasting of BESS SOC under the provision of PFC
service. This forecasting approach takes an important step
forward to the optimal decision-making in smart grids under
uncertainties of related processes and can be potentially used
at large scale for a variety of other applications;

(3) Performance validation of the variational MARNN
for probabilistic BESS SOC forecasting in three European
synchronous areas with different droop curve characteristics
of primary frequency control. The validation is done with
multiple PI evaluation indexes and compared with several
quantile regression algorithms that served as the benchmark.

The rest of this paper is organized as follows: Section II
provides background information about the PFC and related
work devoted to the uncertainties of BESS under simultaneous
provision of the PFC along with other services. A theoretical
ground for the deep learning framework with the extension
to probabilistic forecasting, i.e. the variational MARNN with
MCD and MDNs, is described in Section III. In Section IV,
case studies, feature selection process, MARNN model design
and implementation details, benchmark models and criteria to

validate the performance efficiency of probabilistic forecasting
are presented. The results are demonstrated and discussed in
Section V. Finally, the conclusions are drawn and future work
is planned in Section VI.

II. BACKGROUND AND RELATED WORK

This section provides a necessary background information
about the present PFC practices and principles of the BESS
operation under the PFC. Moreover, a brief review of the
research assessing the uncertainty of sub-processes related to
the optimization of BESS performance for PFC along with
other services is introduced.

A. Primary Frequency Control

In the context of power systems, a pursuit of low-carbon
principles is inherent in a displacement of maneuverable fossil-
fuel based power plants by intermittent renewable generation
and, eventually, imposes challenges of more variable supply
and a reduction in system inertia [22]. As a consequence,
the stability of a power system is being endangered by more
frequent and large frequency deviations, and special control
strategies are necessary to compensate for these variations.
Flexible loads and the BESSs are expected to become one
of the main tools to support system stability in the case
of high renewable penetration. Many studies have concluded
the quality of power system frequency is improved with
the integration of these resources for frequency regulation
[23], [24]. Moreover, the same effect has been also demon-
strated by simulating aggregated small-scale BESSs [25].

Frequency regulation is generally implemented in three
levels with primary, secondary, and tertiary frequency con-
trol also referred to as frequency containment reserves
(FCR), frequency restoration reserves (FRR), and replacement
reserves (RR), respectively. A detailed overview of these
services can be found in [26]. This paper is focused on the PFC
that is one of the most common BESS applications due to the
appropriate technical capabilities of the BESS [27] and possi-
bly higher market dividends compared to other services [28].

The PFC is the first resort that is activated to guarantee the
frequency stability of the power system compensating for
the offset between the production and the demand. Each
of the synchronous areas can have different requirements for
the PFC exposed by corresponding droop curve parameters.
The exact values of these parameters have an impact on the
system dynamics that can be seen from different frequency
distributions [29]. The PFC deploys fast-acting automatic
resources that aim to hold the frequency within the dead-band
(DB) limits Δfdb by responding to the frequency deviations
Δf(t) from the nominal system frequency fN:

Δf(t) = f(t)− fN, (1)

where f(t) is the locally measured frequency at time t. The
response is expressed by the reference BESS power output
PFCR(t) at every moment according to a governing droop
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curve as follows:

PFCR(t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |Δf(t)| ≤ |Δfdb|
Pmax

FCR

(
Δf(t)
|Δfmax|

)
, |Δfdb| < |Δf(t)| < |Δfmax|

Pmax
FCR

(
Δf(t)
|Δf(t)|

)
, |Δf(t)| ≥ |Δfmax|,

(2)

where Δfmax is the full activation frequency deviation
(FAFD). A negative frequency deviation below the DB leads
to BESS discharging, while BESS charging is provoked by a
positive deviation above the DB. If the frequency deviation is
within the DB, the power output is equal to zero, otherwise
it is proportionally increased with coefficient Δf(t)/|Δfmax|
until the full activation frequency power limit is reached.
Exceeding this threshold requires continuous provision of the
maximum reference power output Pmax

FCR from the BESS during
a specified time duration. Moreover, regulatory rules set the
time requirements for the full activation that can be extremely
small for the BESS.

Taking into account the BESS efficiency η, the change of
the BESS SOC within the time period Δt = ti−ti−1 is defined
in percentage as follows:

S(t) = 100%
∫ ti

ti−1

ηPFCR(t)
Erated

dt, (3)

where Erated is the nominal energy capacity of the BESS.
Since the BESS operation at the PFC market directly affects
the BESS life time, the weighting factor between the possible
dividends and operation costs should be evaluated to optimize
the economic dispatch of the BESS for the PFC.

B. Uncertainties of Primary Frequency Control

A generic algorithm presented in [4] takes into account the
uncertainty in the forecasted power and energy requirements
for services of dispatching the operation of an active distri-
bution feeder and PFC to allocate the portion of the battery
power and energy capability. However, it utilizes a simplified
approach for the uncertainty estimation of the required PFC
power by setting it to the maximum value. The forecasting
uncertainty of photo-voltaic (PV) generation is utilized in [30]
for model-predictive optimization for simultaneous provision
of local and PFC services by aggregating energy storage
units. A simultaneous offering of the BESS in day-ahead
energy, spinning reserve, and regulation markets considering
the uncertainties in the predicted market prices as well as in the
energy deployment in spinning reserve and regulation markets
is proposed in [31]. A study in [32] considers using a battery to
simultaneously provide frequency regulation service and peak
shaving with stochastic joint optimization that captures both
the uncertainty of future demand and the uncertainty of future
frequency regulation signals.

Thus, when the PFC is provided by the BESS, the linked
uncertainties include but are not limited to the power gen-
eration output of coupled resource, customer power con-
sumption, market prices, and frequency regulation response.

Therefore, the forecasting tools that can support the optimal
decision-making under risks of these uncertainties are crucial.

III. PROBABILISTIC FORECASTING MODEL

In a model-dependent probabilistic forecasting, the model
uncertainty, or similarly the model estimation error while pre-
dicting the outcome of a stochastic process can be explained
by the noise in the training data sample and the uncertainties
in the models themselves [33]. According to the Bayesian
viewpoint, these uncertainties are also referred to as aleatoric
and epistemic, and can be captured with Bayesian inference.
This procedure assumes a formalization of the uncertainties
as posterior probability distributions over either the model
outputs, or model parameters, respectively.

To provide a probabilistic forecast of BESS SOC, we quan-
tify the aleatoric and epistemic uncertainties via a MDN and
MCD, respectively. In what follows, we first introduce the
MARNN model as the basis for sequence forecasting, and
then proceed to formulate the probabilistic extension with the
MDN and MCD.

A. Forecasting Framework

recurrent neural networks (RNNs) are advanced deep
learning-based structures that have shown high potential in
processing sequentially dependent data. These networks were
initially developed for language modeling [34], but nowadays
they are also applied for solving sequential forecasting prob-
lems in the energy sector [35]. The notable learning ability
of the RNNs for sequential forecasting is explained by their
structure that is designed to hold relevant information from
the past inputs. A vanilla architecture of RNNs is composed
of an encoder and decoder that are generally implemented
with gated recurrent unit (GRU) or long short term memory
(LSTM) unit RNNs. The encoder aims to convert an input
sequence into a latent state representation vector that is further
transformed by a decoder into an output sequence. However,
when a complete sequence of information is encoded in the
single vector, it becomes challenging to decode the first inputs
and long-range dependencies due to the vanishing gradient
problem [36].

Attention mechanism introduced in [37] is one of the latest
advances in neural machine translation that led to significant
performance improvements of deep RNN models in memo-
rizing long source sentences. In this study, we use MARNN
model fω(·) that is deploying lag values from multiple pre-
vious input sequences X = [x1, . . . , xN ] at decoding time
via estimation of the corresponding target variable of output
sequence Y = [y1, . . . , yN ]. In this scenario, a combined
sequence of encoder hidden states for the new input sequence
xn = [x1, . . . , xT ] can be defined as hn = [h1, . . . hT ].
Consequently, these hidden states are retrieved by K attention
heads in order to compute the attention vector an of the input
sequence as follows:

an =
K∑

k=1

T∑
t=1

αkht, (4)
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Fig. 1. Extension of multi-attention recurrent neural network (MARNN)
model with Mixture Density Network (MDN) layer and Monte Carlo (MC)
dropout.

where αk is an attention weight assigned to the encoder state
ht = e(xt, ht−1). This attention vector is fed into a fully
connected layer with ReLU activation function prior to input
to the decoder layer

ReLU(an) = max(0, an). (5)

The last hidden state output of the decoder layer sD is
defined as

sD = g
(
sD−1, ReLU(an )

)
(6)

where sD−1 is the previous decoder state. Finally, the condi-
tional probability over a distinct attention vector an for the
new target variable ŷn is then given by

ŷn = p(f ω(xn)|xn) = max(0, sD). (7)

The structure of such MARNN model is illustrated in Fig.1.
This architecture of the MARNN enables retrieving the mean-
ingful information by the decoder for each of the output that
significantly improves the model performance for forecasting.

B. Mixture Density Networks

The MDNs were proposed in [38] with the motivation
to expand the restricted univariate point predictions of con-
ventional neural networks with the multivariate probability
distribution of the continuous target variables. These networks
exploit the capabilities of Gaussian mixture models (GMMs)
[39] to model arbitrary probability density functions of the
target variable conditioned on the corresponding input vector
using a sufficient number of mixture components.

Based on the assumption of the Gaussian conditional dis-
tribution of the target data, and, the fact that the least-
squares formalism used in conventional neural networks can be
obtained using the maximum likelihood [38], the probability
density of the target variable ŷn is then represented as a linear
combination of kernel functions in the form

pθ(ŷn|xn, θ) =
M∑

m=1

γm(ŷn)φm

(
ŷn|σm(xn), μm(xn)

)
, (8)

where θ = {γm, μm, σm}Mm=1 is a set of M GMM com-
ponents corresponding to the mixture weights, mean, and

variance that can be added on the top of the neural network
with MDN layer without any other modifications, as illustrated
in Fig.1. These mixture parameters are derived from θ as
follows:

γm(xn) =
exp (θγ

m)∑M
m=1 exp (θγ

m)
(9)

σm(xn) = exp (θσ
m) (10)

μm(xn) = exp (θμ
m). (11)

The conditional density function φm is represented in a
Gaussian form as follows:

φm(ŷn|xn) =
1

(2π)c/2σm(xn)c
exp
‖ŷn − μm(xn)‖2

2σm(xn)2
, (12)

where c is the number of outputs of the MARNN model that
is defined by the width of the decoder dense layer.

Training of the MDNs on top of the MARNN is imple-
mented with standard back-propagation through time algo-
rithm, and it aims to maximize the log-likelihood of the
linear combination of the kernel functions, which is equal to
minimizing the negative logarithm of the likelihood:

logL(θ) = − log
(
pθ(ŷn|xn)

)
= − log

( M∑
m=1

γm(xn)φm(ŷn|xn)
)
. (13)

Thus, the output of the MDN prediction consists of (c +
2)M outputs and is further approximated as a Gaussian normal
distribution N (μθ, σ

2
θ) whose mean and variance are defined

as follows:

μθ(xn) =
1
M

M∑
m=1

γm(xn)μm(xn), (14)

σ2
θ(xn) =

1
M

M∑
m=1

γm(xn)
(
σ2

m(xn)+
∥∥μm(xn)−μθ(xn)

∥∥2
)
.

(15)

C. Monte Carlo Dropout

The main idea behind the dropout in a neural network
is known as a stochastic regularization technique that is
used to prevent the network overfitting to the training data
by randomly switching off a subset of the hidden neurons
during the training with a given probability [40]. However,
recent findings in [41] suggest that the dropout could also
be leveraged as an approximation of a probabilistic Gaussian
process to evaluate the model uncertainty with respect to an
observed sample.

The theoretical grounding of the new dropout variant is
based on finding the posterior distribution over the model
parameter space ω following normal prior distributions of
a function fω(·) that defines the neural network model
architecture. Intractable in general, this target is assessed by
approximating the variational distribution of the parameter
space q(ω) with a mixture of Gaussians with small variances
and the mean of one Gaussian fixed at zero, and then by aver-
aging this approximation with MC integration. For the sample
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ω̂z ∼ q(ω), the prediction (probabilistic model likelihood) of
a new model output ŷn given new input xn at test time is
defined in [42] by

p(ŷn|xn, X, Y) ≈ ∫
p(ŷn|xn, ω)q(ω)dω (16)

≈ 1
Z

∑Z
z=1 p(ŷn|xn, ω̂z), (17)

where Z is the number of variation parameters in ω and X, Y
is a set of prior observations. The expectation of ŷn defines
the predictive mean of the model, while its variance represents
the predictive uncertainty.

Here in order to obtain this uncertainty, we apply the MC
dropout for G times with certain probability p for each fully-
connected layer at the test time and collect the outputs of the
MDN predictions. At each test step, the mean of the prediction
μωg (xn) is defined according to (14). Then, the variance of
model uncertainty can be estimated from the variance of mean
of the MDN predictions of the trained network:

σ2
ω(xn) =

1
G− 1

G∑
g=1

(
μωg(xn)− μω(xn)

)2

, (18)

where μωg (xn) ∼ fω(xn) and μω(xn) is the mean of all G
outputs that is defined as follows:

μω(xn) =
1
G

G∑
g=1

μωg(xn). (19)

The MCD in the attention-based RNN model corresponds
to randomly dropping the attention head in the sequence, and
can be interpreted as forcing the model not to rely on some
attention heads for its task.

D. Variational Multi-Attention Recurrent Neural Network

Incorporating the MDNs and MCD in the structure of
MARNN allows extending the capabilities of the latter to
implement a variational MARNN and assess the probabilistic
forecasting [42]. The regression mean of this network fω(xn)
for input sequence xn can be defined as the mean of MDN
and MCD predictions as follows:

ŷn = fω(xn) = μtotal(xn) =
1
2

(
μω(xn) + μθ(xn)

)
. (20)

Under the assumption of statistical independence of the
estimation error and noise, the variance of the total prediction
errors can be obtained through the summation of the variance
of model uncertainty σ2

ω(xn) and the variance of noise σ2
θ(xn):

σ2
total(xn) = σ2

ω(xn) + σ2
θ(xn). (21)

Algorithm 1 summarizes the process of finding these parame-
ters via probabilistic forecasting with the variational MARNN.
Then, these parameters are used to define the upper bounds
U δ

n(xn) and the lower bounds Lδ
n(xn) of the PI by the

following group of equations:{
Lδ

n(xn) = μtotal(xn)− z1−δ/2

√
σ2

total(xn)
U δ

n(xn) = μtotal(xn) + z1−δ/2

√
σ2

total(xn),
(22)

where z1−δ/2 is the standard normal distribution critical value
that depends on the selected tail confidence level δ. This level

Algorithm 1 Prediction Process With Variational MARNN
Input: input sequence xn, trained variational MARNN model

f ω̂(·), MCD probability p, number of iterations G
Output: prediction mean ŷ, variance σ2

total(xn)
// Compute MDN prediction:

1: θ ← {γm, μm, σm}Mm=1 ← f ω̂(xn)
// Split up the mixture parameters:

2: γm(xn)← exp (θγ
m)

�M
m=1 exp (θγ

m)

3: σm(xn)← exp (θσ
m)

4: μm(xn)← exp (θμ
m)

// Compute mean and variance of MDN prediction:
5: μθ(xn)← 1

M

∑M
m=1 γm(xn)μm(xn)

6: σ2
θ(xn) ← 1

M

∑M
m=1 γm(xn)

(
σ2

m(xn) +
∣∣∣∣μm(xn) −

μθ(xn)
∣∣∣∣2)

// Compute mean and variance with MCD:
7: for g = 1 to G do
8: μωg (xn)← steps(2 : 5)← f ω̂

(
xn|MCdropout(p)

)
9: end for

10: μω(xn)← 1
G

∑G
g=1 μωg (xn)

11: σ2
ω(xn)← 1

G−1

∑G
g=1

(
μωg (xn)− μω(xn)

)2

// Compute total mean and variance:
12: ŷn ← fω(xn)← μtotal(xn)← 1

2

(
μω(xn) + μθ(xn)

)
13: σ2

total(xn)←
(
σ2

ω(xn) + σ2
θ(xn)

)
14: return ŷ, σ2

total(xn)

is defined by the prediction interval nominal confidence
(PINC) that corresponds to the expectation of ŷn to be within
the PIs limits [Lδ

n(xn), U δ
n(xn)] with the nominal probability

100(1− δ) %:

E

(
ŷn ∈ [Lδ

n(xn), U δ
n(xn)]

)
= 100(1− δ) %. (23)

IV. CASE STUDY

This section presents the input data, benchmark models,
optimization of the model hyper-parameters, implementation
details, and evaluation indexes that were used to comprehen-
sively study the performance of the variational MARNN for
the PI forecasting of BESS SOC.

A. Battery Energy Storage System State-of-Charge Modeling

The evaluation of the model has been carried out in three
different regulatory environments corresponding to the PFC
by BESS in CE, NE, and GB European synchronous areas.
For each of the cases, a simple BESS model was applied
to simulate the BESS SOC according to (3) and the PFC
droop curve parameters set by the regulatory rules in the area.
The real frequency measurements from the three areas for the
period of four years (2015 - 2018) served as an input for the
BESS model. The frequency data are publicly available and
can be accessed for an evaluation [19]–[21]. The original time
resolution for the datasets are 0.01, 1, and 10 seconds. Prior to
the simulation, the frequency measurements were resampled
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Fig. 2. Characteristics of hourly BESS SOC data in Great Britain, Continental Europe, and Northern Europe synchronous areas. From left to right:
autocorrelation plot, partial correlation plot, histogram, and boxplot.

TABLE I

CHARACTERISTICS OF THE SELECTED FREQUENCY RESPONSE

RESERVES IN THE STUDYING AREAS [29]

via linear interpolation to a resolution of 1 second. The sim-
ulation was conducted assuming that the BESS under control
does not cause the frequency deviation. The BESS power-to-
energy ratio was set to 1 as it is one of the most common
ratios for the PFC according to [43]. The discharge and charge
BESS efficiency was equal to 98.5 %, and no degradation was
considered in order to simulate the average battery response
for every new measurement. Also, an assumption was made
that the full activation time is set to less than one second.

For the BESS SOC modeling in this study, the PFC,
wide enhanced frequency response (EFR-Wide), and FCR for
Normal operation (FCR-N) characteristics of the frequency
response droop curve in Germany, Great Britain, and Finland,
respectively, were utilized. These characteristics are summa-
rized in Table I and reflect three different patterns of the
droop-curve characteristics. In the CE – PFC, the DB is the
lowest, while the allowable frequency deviation is between
the highest in GB – EFR-Wide and the lowest in NE –
FCR-N. Moreover, the characteristics of GB – EFR-Wide
correspond to the highest values for the frequency deviation
and deadband, while NE – FCR-N has the highest DB and the
lowest deviation.

The outcome of the simulation was three time series con-
sisting of BESS SOC data with one-second resolution for the

period of four years that were further re-sampled to an hourly
sum of BESS SOC. The characteristics of these datasets can be
seen in Fig. 2. The autocorrelation and partial autocorrelation
plots of the datasets demonstrate that the 24-hour lag values
are statistically significant. However, the scales and duration
of the positively correlated spikes vary from the GB with the
lowest values and shortest period to the CE with the highest
correlation and longest period. Moreover, the histograms of
the datasets illustrate the difference of underlying frequency
distribution of continuous BESS SOC data. According to the
densities of the areas, the amount of under-frequency hours
that correspond to the negative sign of BESS SOC and power
injection into the grid is prevailing over the over-frequency
hours. Moreover, for the case of NE, many of the hours are
fluctuating at the values close to zero. The deviation of most
SOC values for GB and CE is within 10 % per hour, while
for the NE, these extreme values are closer to 50 %. For
hourly distribution of the values, it can be noticed that it is
relatively stable during the day in the GB area with minor
negative deviation of the median at the morning hours and
variations during the daily hours. In contrast, the other areas
have more unique hours with different median, interquantile
range and variations between the maximum and minimum
values.

Thus, these data representations demonstrate that the pre-
sented areas have different BESS SOC distributions that reflect
the difference of regulatory environments of frequency control
and overall properties of power system dynamics in the areas.
A study of the variational MARNN model performance on all
of the datasets is crucial in order to understand its uniformity
to the applications of BESS SOC forecasting. In specific,
it provokes the questions of the attention performance with
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TABLE II

INPUTS FOR A DAY-AHEAD BESS SOC FORECAST AT THE t-th HOUR

different correlation levels at the multi-attention lag hours as
well as the ability of MDNs to capture diverse distributions.

B. Feature Selection

Feature selection for the forecasting of BESS SOC is
challenged by a large amount of factors that have an influence
on the frequency in a specific synchronous area. The major
circumstances include but are not limited to traditionally wide
spatial characteristics of interconnected macrogrids, possibly
different regulatory requirements for frequency regulation in
the macrogrids, diverse generation and consumption mix,
multiple direct current links between the areas. In this scenario,
mining supporting features such as weather or market data
from sub-areas is not always feasible, especially for a large
synchronous areas such as CE. Consequently, a direct choice
of features is restricted to datetime features, and derivatives of
frequency and BESS SOC data. The latter two demonstrate the
highest feature importance for the forecasting of BESS SOC
even in comparison with the market data according to the study
in [44] where the above-mentioned features were evaluated
for point forecasting of BESS SOC. Here, the inputs used
for forecasting the BESS SOC delta between the consecutive
hours for the t-th hour of the next day, ΔSt, included time,
BESS SOC data, and frequency features. Their descriptions are
listed in Table II, and their correlations with the target ΔSt

are visualized in Fig. 3. The datasets are publicly available for
examination in [45].

The forecasting period was selected based on the current
structure of liberalized electricity markets and battery eco-
nomic dispatch in a multi-objective environment. Here it is
assumed that for the day-ahead multi-service optimization,
the optimal bidding strategy for the next day should be
prepared before the closure in the day-ahead wholesale market
(typically at 12h 00). Thus, the objective was forecasting
the BESS SOC with one-hour resolution for a sequence
of 36 hours ahead. Consequently, all of the features except

Fig. 3. Correlation plot of the selected features with target variable ΔSt

for three synchronous areas: Great Britain, Continental Europe, and Northern
Europe.

the time are shifted by at least 48 hours due to the highest
correlation at 24-th hourly lags and the need to exclude future
values from the inputs for the forecasts from 24 to 36 hour
steps. An example timeline for the forecasting of day-ahead
BESS SOC delta ΔSt is illustrated in Fig. 4. For the MARNN
model, the input for the prediction of t+P step ahead, where
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Fig. 4. Many-to-one scheme deployed by the variational MARNN for the
forecasting of ΔSt.

t is the current hour, consists of a sequence of T = 48 data
points with feature dimension and includes the values for the
period from t − 96 + P to t − 48 + P . For the benchmark
models, the input at every prediction step is the first value of
the sequence at t− 48 + P with dimension of the features.

According to Fig. 3, in most of the cases, the correlation
of the target variables with the features is relatively low and
not exceeding 10 %. The highest correlation with the target is
provided by shifted BESS SOC St−48, and this correlation is
expected to be lower for the more distant shifts, not presented
in Fig. 3. Apart from Continental Europe, most of the features
are not well correlated with the time features. Concurrently,
these BESS SOC and frequency features are well correlated
among each other.

C. Benchmark

In order to evaluate the performance of the variational
MARNN model with representative benchmark, it was com-
pared with the following models that adopt quantile regression
for construction of prediction intervals:

– Linear Quantile Regression (LQR) is a variation of linear
least-squares regression that models not the conditional mean
of the response variable but the conditional τ -th quantile of
the response variable [46].

– Quantile Regression Forests (QRF) is a generalization of
random forests that enables estimation of conditional quantiles
for high-dimensional response variables. In contrast to the
random forest that contains only the conditional mean of the
observations that fall into the tree node, QRF expands this
node to keep the value of all observations and returns the full
conditional distribution of response value in its prediction [47].

– Quantile Gradient Boosting (QGB) is a modification of
gradient boosting algorithm where a quantile loss function is
used as a loss function for a gradient calculation to adjust the
target of consecutive weak learner [48], [49].

– Quantile Regression Neural Network (QRNN) is an
extension of the neural networks with quantile regression
loss function for the estimation of the predictive distribution
via conditional quantiles [50]. In this study, QRNN was
implemented by a shallow neural network with two wide fully-
connected layers and ReLU activation function.

The listed quantile regression models were extensively used
in many Global Energy Forecasting Competitions [51], [52]

TABLE III

SEARCH SPACE AND THE RESULTS OF THE MARNN
MODEL HYPER-PARAMETER OPTIMIZATION

and can be considered as a state-of-the-art in the topic of
probabilistic energy forecasting.

In quantile regression the τ -th quantile level is defined as the
value below which the proportion of the conditional response
population is τ for τ ∈ (0,1). The limits of PI for a nominal
coverage rate 1− δ are then constructed by the quantile levels
δ/2 and 1− δ/2. The quantile loss function averaged over the
whole dataset for the corresponding conditional quantile fω |τ
is determined as follows:

L(y, fω |τ) =
1
N

N∑
n=1

L(yn − fω(xn)|τ), (24)

where L(yn − fω(xn)|τ) = L(εn|τ) is the loss of individual
data point that is modelled with a pinball loss function as
follows:

L(εn|τ) =

{
τεn, if εn ≥ 0
(τ − 1)εn, if εn < 0.

(25)

D. Hyper-Parameter Optimization

The hyper-parameters of the variational MARNN model
and corresponding benchmarks are selected using Bayesian
optimization with the Tree Parzen Estimator (TPE) hyper-
parameter search [53]. The initial condition and the results
of hyper-parameter search space are summarized in Table III.
This optimization was primarily aimed to tune the structure of
attention and decoder layers, find appropriate training settings,
and define an proper number of mixtures to fit in the datasets.
In the hyper-parameters, the attention length corresponds to
the number of past inputs with 24-hour lag that are used to
calculate the state vector in the attention layer. The 24-hour
lag is selected due to the daily trends in the datasets identified
in the previous steps. The number of hidden units specifies
the number of units in the fully-connected dense layer of the
decoder. The dropout rate is used for the densely-connected
parts of attention and decoder layers of the model, as illus-
trated in Fig. 1. The learning rate is adjusted for the Adam
optimization algorithm in the model.

The optimization process was running for 100 trials on
each of the datasets following the sequential automatic hyper-
parameter optimization presented in [54]. The inputs of
the variational MARNN model were the hyper-parameters
selected by the TPE at each trial and training and validation
data of the datasets. The history of model loss served as an
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Fig. 5. The effects of hyper-parameter optimization on the variational MARNN model loss: the highest concentration of the optimization trials is marked
with light color tint and the lowest with dark color tint. The best trial is marked with a red star. The values of the hyper-parameters that led to extreme model
loss are excluded from the visualization.

input for the optimizer and was evaluated with mean squared
error of the mixture density network. Each of the trials was
restricted to 20 epochs with the early stopping criterion equal
to 5. More details about TPE optimizer can be found in [53]
and its application to the MARNN model is described in [54].

Density plots of the TPE optimization trials on the hyper-
parameters are illustrated in Fig. 5. From them the effects of
these parameters on the model performance can be retrieved.
According to the results, some of the hyper-parameters are
identical to all the datasets while some are different for each
case. For instance, the optimizer demonstrates that three mix-
tures and more than ten times higher amount of hidden units in
the decoder dense layer is enough to reflect the distribution of
BESS SOC data despite its diversity in the synchronous areas.
In contrast, the dropout rate can vary from 10 % to 40 %, and
it does not enable formation of any general conclusions about
the best practices. Also, the attention length of the models
has diverse patterns for the highest concentration of trials. For
the GB area, the attention number was fluctuating around the
lowest boundary of the search space, for the NE area, it was
just above the average, and CE had trials in both but primarily
close to the lowest one. These results can be interpreted with
the autocorrelation data in Fig. 2 and summarized as the
attention length is negatively proportional to the correlation
of attention heads. Moreover, the optimal learning rate resides
close to the lowest boundary despite that in the case of CE
and NE areas, the best trial was at the higher rate. As for
the batch size, the best results for the datasets of comparable
length are expected from the categories of 128, 256 or 1048.
Besides the above mentioned hyper-parameters, the MARNN
model also has the number of inputs, the number of hidden
units in the fully-connected layer of attention, and the number
of encoder and decoder units. These hyper-parameters were

TABLE IV

SEARCH SPACE FOR HYPER-PARAMETER OPTIMIZATION

OF THE BENCHMARK MODELS

not optimized but chosen as follows: the input is equal to a
sequence of 48 data points with arbitrary feature dimension;
the number of hidden units in the fully-connected attention
layer and the number of encoder units were equal to length
of the input sequence; the number of decoder cells is equal to
the number of attention heads.

The hyper-parameters of the benchmark models are pre-
sented in Table IV. For these models, the loss function during
the hyper-parameter optimization was the average quantile loss
over the validation set at 0.5 quantile. The results of their
optimization are out of scope of this study.

E. Model Implementation Details

The MARNN model was implemented using Keras
2.1.5 high-level neural networks API [55] with Tensorflow
1.14.0 [56] as the backend in Python 3.7 environment.
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The MARNN model was developed based on [57], the MCD
was added to the model with astroNN package [58] and MDN
layer was built on top of the MARNN with [59]. The fast
GRU implementation backed by NVIDIA CUDA Deep Neural
Network library (cuDNN) [60] was used for the encoder and
decoder RNNs.

The target was chosen as a difference between the consec-
utive hours ΔSt in order to remove the hourly autocorrelation
that generally led to a persistence model. Moreover, MinMax
scaling with the range from 0 to 1 was utilized for the datasets.
Finally, the model validation was carried out using hold-out
method, in which the dataset was split for training, parameter
regulation, and performance evaluation in proportions of 50 %,
25 % and 25 %, which is approximately equal to two years of
training and one year for validation and testing, respectively.
The model was trained for 100 epochs with 20 as the early
stopping criterion. The number of MCD iterations was limited
to 200.

In this study, LQR model was implemented with QuantReg
function of statsmodel package [61]. Also, a variance inflation
factor was utilized to remove collinear features from the
datasets prior the LQR modeling. QRF and QGB models
were created using Random Forest and Gradient Boosting
Regressors from the scikit-learn library [62]. In order to obtain
QRF from Random Forest Regressor, the minimum leaf node
hyper-parameter was set to one. The QGB was modelled with
explicit quantile prediction. The QRNN was developed with
Keras library using sequential model architecture. Examples of
the benchmark models are available in [63].

The automatic hyper-parameter optimization of the mod-
els was built with Hyperopt library [64]. Also, Hyperas
package [65] that is a wrapper over Hyperopt library was
utilized for the variational MARNN model hyper-parameter
optimization.

F. Prediction Interval Evaluation Indexes

In this study, the performance of the probabilistic forecast-
ing is quantitatively evaluated based on the resolution and
the reliability of the constructed PIs, as described in [66].
The reliability of the PI for N samples is illustrated by the
prediction interval coverage probability (PICP) that is defined
as follows:

PICP =
1
N

N∑
n=1

Iδ
n, (26)

where Iδ
n is the PICPs index:

Iδ
n =

{
1, ŷn ∈ [Lδ

n(xn), U δ
n(xn)]

0, ŷn 	∈ [Lδ
n(xn), U δ

n(xn)].
(27)

The purpose of the resolution metric is to evaluate the
interval sharpness to restrict the possibility to obtain a high
reliability PIs with increased width. This metric is expressed in
the PI normalized average width (PINAW) defined as follows:

PINAW =
1

R ·N
N∑

n=1

[
U δ

n(xn)− Lδ
n(xn)

]
, (28)

where R = max(Y) − min(Y) is the difference between the
bounds of the main targets. A narrower PIs correspond to a
smaller PINAW and, hence, demonstrates better sharpness.

To jointly assess the coverage and interval width, a cover-
age width-based criterion (CWC) is applied. For a confidential
probability 100(1− δ) % denoted as ξ, it is defined as

CWC = PINAW (1 + νe−λ(PICP−ξ)) (29)

ν =

{
0, PICP ≥ ξ

1, PICP < ξ,
(30)

where ν represents a forecast score used for penalizing if the
PI coverage is lower than the required confidence level. The
penalty coefficient is defined by λ and set to 10 in this study.

V. RESULTS AND DISCUSSION

The results of the performance evaluation are shown
in Fig. 6 and Tables V, VI, VII. Each sub-plot of the
figure contains the real and forecasted BESS SOC information
related to a random 36-hour forecast interval from the test data.
The forecasting results are represented in the form of PIs with
confidence levels from 10 % to 95 %. The PIs are consecu-
tively illustrated for LQR,QRF, QGB, QRNN, and variational
MARNN for each of the datasets. The best results for the
evaluation indexes are marked in bold in the Tables. The logic
behind the best index evaluation is the following: the best
PICP is the minimum PICP index that is above the required
confidence level or, if this condition is not satisfied, the closest
to the required coverage; The best PINAW and CWC indexes
are chosen as the lowest from those models whose PICP is
above the required confidence level, or otherwise from the
models whose PICP is above or equal to the previous required
coverage level(s).

In the GB synchronous area, the variational MARNN model
demonstrated superiority over the other models despite the
lowest correlation of hourly lag values among the investigated
areas and, hence, the lowest expectations for the MARNN
model performance. This predominance can be explained by
generally too narrow PIs of the quantile regression models
and wide coverage of the MARNN model. For example, none
of the quantile regression models were able to provide the
required coverage for the PIs, and, hence, a penalty score
was applied in the CWC index that raised the index values
several times compared to PINAW. In contrast, the coverage
of the variational MARNN was exceeding the required level
by 5.5 % on average. However, visual representation of the
model performances also suggests that the LQR model had
good sharpness around the true mean of BESS SOC values,
while the QRNN had passive variation and low prediction
capabilities. Among the ensemble models, QRF had slightly
better results than the QGB model.

The performances of all the models were at the high level
in the CE area. These results can be explained by good
correlation of the BESS SOC values seen in Fig. 2 and Fig. 3.
Almost optimal indexes were shown by the LQR model with
average PICP error of only 0.4 %. However, even in this
scenario, there were several cases when the QGB and QRNN
models were better. Moreover, the QRF model was the only
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Fig. 6. An example day-ahead forecast of BESS SOC delta with prediction intervals (PIs): LQR – Linear Quantile Regression, QRF – Quantile Random
Forests, QGB – Quantile Gradient Boosting, QRNN – Quantile Regression Neural Network.

TABLE V

PERFORMANCE EVALUATION OF THE PREDICTION INTERVAL FORECASTS FOR GREAT BRITAIN

TABLE VI

PERFORMANCE EVALUATION OF THE PREDICTION INTERVAL FORECASTS FOR CONTINENTAL EUROPE

to achieve the required coverage in all of the intervals. The
variational MARNN model provided the required coverage for
all the PIs except 95 % interval where it had shown 94.8 %
coverage. In the successful cases, the average exceeding of
the PICP index by the MARNN model was at the level 5.8%.
The visual perspective illustrates that the LQR, QRF, and QGB

models had identified well the conditional mean of the BESS
SOC data.

In the case of NE area, the best indexes were demonstrated
by the QGB model even though its PICP index was slightly
lower the required coverage for the highest intervals (80, 90,
and 95%). In these intervals, the QRF was more robust to
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TABLE VII

PERFORMANCE EVALUATION OF THE PREDICTION INTERVAL FORECASTS FOR NORTHERN EUROPE

provide the required coverage. The indexes of LQR were gen-
erally lower the required levels, and the QRNN had variable
success in coverage of the data. The MARNN model was able
to provide the required coverage for only less than half of the
intervals having trouble to catch the data points in the highest
intervals. The maximum decrease of the MARNN PICP in
comparison with the nominal confidence level is within 8.7%.
The reason of such indexes can be seen in high sharpness
and narrowness of the MARNN intervals that is demonstrated
in Fig. 6. Also, the MARNN model was superior in predicting
the conditional mean of the BESS SOC data.

In general, the MARNN model has shown good perfor-
mance in respect to the coverage probability for the different
regulatory environments and if compared to the performance
of quantile regression algorithms. In particular, according
to the PICP indexes, its coverage probability achieved the
required confidence levels in most of the intervals for the GB
and CE areas, but was relatively low for the NE area. However,
in the CE and GB areas, the MARNN model follows the true
mean regression worse that in the NE are, and this can be
seen in Fig. 6. Nevertheless, this approach gives better PICP
and CWC in the shortcoming areas of the quantile regression
algorithms compared.

VI. CONCLUSION AND FUTURE WORK

In this study, a hybrid probabilistic model with combined
MDNs and MCD over MARNN was presented and deployed
in order to forecast BESS SOC under the PFC. This approach
allows rigorously quantifying the overall forecasting uncer-
tainty related to the inherent data noise and model estimation
error in the form of PIs with a particular confidence level.
Moreover, the hybrid MDN and MCD approach is extremely
generic and can be easily applicable to any existing neural net-
works. The performance of the model was evaluated for three
different regulatory environments corresponding to the PFC by
BESS in CE, NE, and GB European synchronous areas and
compared with state-of-the-art quantile regression algorithms
in probabilistic energy forecasting such as the LQR, QRF,
QGB, and QRNN. According to the case studies, the proposed
variational MARNN model has satisfactory performance and
good generalization capabilities for prediction interval fore-
casting of the BESS SOC despite the diversity of droop curve
parameters and, hence, different frequency distributions in the
case areas. Therefore, the proposed approach can potentially
provide an efficient and meaningful tool to hedge not only

against uncertainties and risks of the BESS PFC, but it can
also be leveraged in other smart grid applications to assist in
the related decision making activities.

The potential future research questions include:
(1) Feasibility of the economic benefits that this hybrid fore-

cast model may achieve in comparison with other optimization
methods.

(2) Extension of the model to multivariate and simultaneous
probabilistic forecasting with cross-dependency of the BESS
SOC and the market forecasts as well as consideration of the
BESS degradation under PFC in the BESS SOC forecast.
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