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ABSTRACT This paper aims to introduce a predictive weather-based control policy for the microgrid energy
management to improve the resilience of the microgrid. This policy relies on the application of machine
learning models for the prediction of microgrid load demand and solar production and supply interruption
in the upstream distribution network. The predictions serve as an input to multiobjective chance constraint
optimization that balances the microgrid resilience and economic objectives based on the probability of a
supply interruption. The interruption predictions are made with a decision-tree-based model that can predict
an upcoming interruption in the distribution network with 78% of the maximum accuracy. The case study
microgrid consisting of several customers, solar photovoltaic generation, and battery storage is applied to
cluster areas located in Finland. Overall, the developed control policy shows an improvement in the daily
resilience of the microgrid in regard to an interruption in the main grid when compared with economic
dispatch only.

INDEX TERMS Microgrid resilience, weather prediction, machine learning, battery storage, chance
constraint optimization.

I. INTRODUCTION
The use of distributed energy resources (DERs) has recently
been increasing especially in microgrids (MGs) as they are
known to improve the reliability of electricity supply in
sparsely populated areas and contribute to the reduction of
greenhouse gas emissions [1]. As the integration of DER
and household loads increases, maintaining the power system
stability and voltage profile as well as management of energy
resources in a cost-effective way become more challeng-
ing [2]. Microgrids are capable of operating in two different
modes: either grid connected or island.While operating in the
grid-connected mode, the power is exchanged with the main
grid from the distribution feeder, which ensures the power
dispatch and contributes to the system stability. In case of
power faults, natural disasters, or not meeting power quality
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requirements, the MG will operate in the island mode. In this
mode, battery energy storage systems (BESSs) are used to
cover load energy consumption [3]. The BESSs depend on
installed load power and have several limitations, such as
power rating, Boolean charging/discharging scenarios, and
time-dependent energy content dynamics.

During MG operation, a BESS improves resilience during
operation in the island mode. Resilience is a relatively new
concept in power systems, and in recent years, it has had a sig-
nificant impact on the definition of the reliability of electricity
distribution networks [4]. The definition proposed by [5]
involves energy systems being able to recover fast from events
caused by external factors. Moreover, the definition provided
by [6] for resilience relies on four aspects: foresee/avoid,
absorb/withstand, respond/restore, and adapt/upgrade. These
elements play a key role in the function of MGs
for the modernization and decentralization of electricity
grids.
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Many strategies to manage the power and improve the
resilience ofMGs have been proposed in the literature [1], [7],
[8]. These strategies combine predictive models for optimal
dimensioning of the BESS based on the DER power infeed
forecast of photovoltaics (PVs) and wind turbines and con-
trol methods to maximize resilience when operating in the
island mode and to maximize energy profits from energy
dispatch [9]–[11].

Renewable energy in MGs brings new challenges in terms
of how to deal with uncertainty in power generation. In [12],
uncertainty quantification is used to facilitate integration
of an energy storage and thereby mitigate the impacts of
uncertain PV and wind generation. The array of prediction
techniques is also growing as artificial intelligence algorithms
and optimization methods are being developed. One of such
techniques is reported in [13], where forecasting of solar
radiance, temperature, and load is carried out in addition to
particle swarm optimization to optimally control and manage
power in an MG.

Although resilience inmicrogrids has been a topic of grow-
ing interest in the past few years with an exponential increase
in publications, to the authors’ knowledge, the application
of predictive methods has been limited. An approach that
uses outage decision-making for power management in smart
homes is reported in [14]. Outage management can benefit
MGs, which are very prone to interruptions, as well as remote
areas of difficult access. In [15], a multilevel MG method
is proposed that incorporates a stochastic islanding event
into the operational optimization, thereby allowing to foresee
the occurrence of interruptions. The model can be adopted
for optimal scheduling by applying the uncertainty of loads,
DER, demand-side management, and frequency control.

The traditional concept of reliability has also been shifting
toward resilience to take into account more characteristics
of power grids; still, as discussed in [16], [17], reliability
plays an important role in gridmanagement and brings certain
benefits to the grid. In [18], these benefits include mini-
mization of load curtailment, flexibility, and improvement
in the reliability index. In their paper, the authors propose
a general framework for the assessment of the reliability
of distribution systems with multiple microgrids to quantify
the impact of different operating schemes by using a model
predictive control for power management. In [19], the authors
develop a resilience-oriented stochastic scheduling method
for microgrids considering economic metrics; the resilience
index is improved by 16.5% by integrating resilience metrics,
stochastic planning, and resilient operation of DER into the
method. Further, in [20], a microgrid scheduling strategy
is developed considering resilience requirements: operating
costs, energy purchasing costs, and degradation cost of the
BESS. The solution uses an optimization model ensuring
resilience by facilitating possible MG interruptions by secur-
ing load supply and robustness in DER.
BESSs have shown efficacy to increase resilience in MGs,

and to this end, correct sizing to meet the economic require-
ments is an important task. In [21], the authors use a linear

optimization approach to determine the most cost-effective
BESS sizing for different types of load and DER generation.
In the optimization, it is necessary to use historical data
and accurate forecast resources for DER. Insights into the
obtained power-to-energy ratio can also enhance the design
of new commercial BESSs, which could possibly benefit and
standardize other MG systems.
A similar approach as presented in this paper can be found

in [22], where the authors use a home energy storage man-
agement system for decision-making. This system enhances
home resilience in the face of extreme events. The model
decides in advance when to charge the BESS based on the
condition of the network and the probability of an outage.
The interruption model takes into account the wind speed to
provide the probability of an interruption for the location;
however, in the case of extreme events there might be also
other variables involved. Our approach considers a set of dif-
ferent variables, and by using machine learning techniques,
we are able to reliably predict an interruption for the next
day, thereby improving the battery state-of-charge (SOC).
Furthermore, the model is scalable to the size of the MG or
the area of interest, being thus not limited to a single MG but
being applicable also to multiple microgrids and large areas.
This can greatly improve the resilience in the system to be
able to withstand upcoming severe weather interruptions.

In this paper, a weather-based predictive control policy is
used to improve the resilience of an MG when operating in
the island mode. This method can predict the energy require-
ments for the BESS and schedule day-ahead optimal opera-
tion of the BESS based on predictions of machine learning
models for load demand and solar PV power production.
The proposed methodology takes into account the probabil-
ity of an interruption for the prediction horizon based on
weather conditions so that any decision taken beforehand to
charge/discharge the MG battery will have a profound impact
on theMG resilience when operating in the island mode. This
will contribute to the MG decentralization paradigm, because
the total output power supply from the main grid and the
power from the DERs connected to the affected MG will be
maximized. The contributions of this paper are:
• formulation of multiobjective optimization problem
under uncertainty for an MG BESS that takes into con-
sideration the interruption probability and economical
charging and thus foresees upcoming island operating
modes;

• methodology for machine learning predictions of the
probability of a daily supply interruption in the upstream
distribution network, microgrid load demand, and solar
PV production that are integrated into the optimization
problem;

• introduction of a daily dependency (resilience metric)
for the MG that continuously estimates the withstanding
capability of the MG in the face of extreme weather
events;

• quantitative comparison of how different battery sizes
can affect the degree of daily dependency in the MG.
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The rest of the paper is organized as follows.
In section II-A, we analyze previous approaches to resilience
and optimization in microgrids. The methodology of the
proposed approach is presented in Section II. The predic-
tive interruption model and the machine learning model
are described in Section III. Section IV addresses the
techno-economic dispatch optimization problem for micro-
grid energy management. A case study MG placed in the
clusters of the interruption model, results, and discussion are
summarized in Section V. Finally, conclusions of the paper
are presented in Section VI.

II. METHODOLOGY
A. BACKGROUND OF RESILIENCE
The resilience framework introduced in this paper is based
on a model proposed by [23]. In this context, to improve
the resilience of an MG, we use the blocks shown in Fig. 1.
The four pillars of MG resilience are: methods, attributes,
interruptions, and metrics. The first block, methods, refers
to a variety of methods or techniques that contribute to the
improvement of resilience, the ones used in this work includ-
ing resource allocation, battery scheduling, energy optimiza-
tion, fault prediction, and load and production predictions.
In the second block we find attributes, which are the prop-
erties or characteristics of an MG. Understanding of the
system attributes of any MG, such as islanding capacity,
is important as these attributes play a significant role in the
decision-making concerning microgrid components. These
decisions, in turn, have a direct or indirect impact on the sys-
tem recovery. In the third block there are interruptions. Here,
external events are assumed to be weather dependent and
influenced by the grid topology next to the MG connection.
Finally, for the assessment of the MG we use one common
metric in resilience: dependency [24]. It is an index that
means ‘‘a linkage or connection between two infrastructures,
through which the state of one infrastructure influences or is
correlated to the state of the other.’’ This is a key attribute
when using a battery storage, and in this work, it is adopted
in order to quantitatively characterize dependency in each
of the MG load by measuring the need for energy storage
to achieve the resilience objective. First, we introduce an
analogous availability measurement [24], which measures
individual resilience of a load as

RI =
TU
T
=

TU
(TU + TD)

, (1)

where TU is the time up (microgrid is connected to the main
grid) and TD is the time down (microgrid disconnected from
the main grid). TU is directly related to the withstanding
capability, whereas TD is the service recovery speed, which
is influenced by cyber-physical processes and human-driven
activities (e.g., maintenance, repair, availability of human
resources). Then, analogous to Eq. (1), the degree of depen-
dency of a load, and for the context of the MG, that of the
entire MG load, RL , is given by:

RL = 1− (1− RI )e−uTS , (2)

where TS is the energy capacity stored in the MG BESS,
measured by autonomy when entering the island mode, and
u is the equivalent rate of the power grid, inverse to TD. The
interdependency of battery and resilience is seen in Eq. (2).
It shows that the BESS makes the MG more resilient to
disruptions.

B. MICROGRID MANAGEMENT ROUTINE
The Methods block in Fig. 1 contains the elements of load
prediction, interruption prediction, DER generation predic-
tion, and BESS management. According to the control policy
depicted in Fig. 2, the algorithm starts at day 1 at an inter-
val of a day (from start to end) to analyze the resilience,
and an scheduling based on the weather forecast models is
made for the next 24 h. Based on the weather conditions,
a coefficient for the probability of an interruption is calculated
from the forecast model for the probability of interruption.
To prepare for an eventual island mode, the MG and the
BESS have to be scheduled based on the future output of
the DER and load power estimation; the models described in
Sections III-A and IV-A provide details of both steps. Once
the day is over, the daily dependency is calculated as pre-
sented in Section II-A. This process can be continuously
checked and updated on a daily basis. Fig. 3 shows the impact
of a varying BESS SOC (or analogous TS ) onwhole-year runs
(nS ); the figure illustrates MG management without consid-
ering any prior cost-effective or precautionary charging of the
BESS, which is seen as sudden fluctuations from day to day.
The values are within a range that depends on the resilience
index calculation period (a day) and TS .
The dependency index metric is usually calculated based

on historical data, and thereby, average TU . When this metric
is calculated on a daily basis, it will show a significant dif-
ference when compared with a method that does not take the
interruption model into consideration because of variability
in the charging of the BESS.

III. PREDICTIVE MODELS
A. RISK ANALYSIS OF THE PROBABILITY OF AN
ELECTRICITY SUPPLY INTERRUPTION
The data provided by the Finnish DSO Elenia were
used to predict the daily fault occurrence in the distribu-
tion networks of the following regions: Kanta-Häme and
Päijät-Häme, Pirkanmaa, Central Finland, and Ostrobothnia.
First, we defined clusters comprised of Elenia’s substations so
that the maximum distance between substations in a cluster
was not larger than 50 km. Agglomerative hierarchical clus-
tering, specifically complete-linkage clustering implemented
in the scikit-learn library [25], ended up with 31 substa-
tion clusters, to which the MGs are connected in our study.
Fig. 4 presents the clusters obtained and their centroids in
the ETRS-TM35FIN coordinates. Additionally, the figure
shows the weather stations closest to Elenia’s network. The
original data contained 36874 unique faults that occurred
in the whole network of Elenia between January 2011 and
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FIGURE 1. Framework of improving the resilience of a microgrid (adapted from [23] and revised).

December 2013. Faults associated with substations were
summed up for the corresponding clusters with a daily time
resolution. An additional categorical variable indicating the
absence or presence of faults per day was introduced for each
cluster. These binary variables worked as outcomes in the
cluster fault prediction. Next, we created a set of predictors
that included weather observations and time variables (see
Table 1). The coordinates of the weather stations presented
in Fig. 4 were used to collect historical weather observa-
tions from [26]. We transformed the coordinates into the
WGS84 system and retrieved the data applying the package
wwo− hist [27], [28]. For each cluster, the weather observa-
tions were gathered and averaged over the weather stations
closest to Elenia’s substations. The set of input variables
included 14 predictors similar to the previous study [29].

Predictive models were built separately for each cluster.
The data collected in 2013 were reserved to test the models,
whereas fault records from 2011 and 2012 were included
in the training. As a learning algorithm, we chose Random
Forest because of its useful properties: the ensemble-based
nature aims to reach robustness and control overfitting [25],
[30]. To reduce the model variance, we trained 250 trees in
each ensemble. The maximum tree depth was tuned for each
cluster: when varying the tree depth from 3 to 9, we selected
one model trained on the data from 2011 that showed the
highest accuracy on the validation data from 2012, and then
switched around the training and validation years to select
one more model. The outcomes of these two models on the
test data were averaged to obtain the final estimate of the fault
probability. Besides, to avoid tuning a cut-off for each cluster
where the balance between days with and without faults
differs, we oversampled the underrepresented class in the
training years 2011–2012. As a result, 0.5 cut-off was applied
within all clusters when estimating the model accuracy.

According to the previous study [29], the weather obser-
vations relevant to predicting faults are contained in a few
recent measurements. Therefore, we tested one-, two-, and

three-day historical weather as the model inputs and found
that when predicting faults for the moment t, the weather
observations from the moment t and t-1 led to the highest
maximum accuracy across clusters, i.e., 78%, and the highest
number of clusters with the accuracy exceeding 70%, i.e.,
ten clusters. In the real use case scenario, historical weather
observations should be substituted with the weather forecast.
The resulting accuracy of the test data is presented in Fig. 4.

B. MACHINE LEARNING MODEL FOR LOAD AND SOLAR
PV PREDICTION
The time series predictions of the load and solar PV pro-
duction of the microgrid are required for the operation man-
agement of the microgrid BESS. Here, point forecasts (i.e.,
conditional mean of the predictive distribution) are produced
for the next day with a 24 h ahead horizon and implemented
with a Light Gradient BoostingMachine (LightGBM) regres-
sion [31] from the corresponding library [32]. The LightGBM
model is a scalable and efficient gradient boosting framework
that uses a decision-tree-based learning algorithm. In fact,
the high accuracy of the LightGBM model was recently
demonstrated in theM5Accuracy competition [33]. Themain
difference of the model compared with the similar algorithms
is the usage of a leafwise tree growth algorithm instead of
the depthwise tree growth. This approach facilitates model
convergence because of the faster finding of the best split
points in each tree node but comes with higher chances
for overfitting, i.e., poor generalization for unseen testing
data. For instance, the unconstrained maximum depth and
number of leaves can improve the training accuracy but also
contribute to overfitting. Therefore, hyperparameter tuning is
important to achieve a good model generalization with the
LightGBM model. In this study, we apply a tree-structured
Parzen estimator from the hyperopt library [34] to search
for the hyperparameters affecting the model accuracy and
overfitting. In particular, for the LightGBM model we tune
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FIGURE 2. Flowchart of the control policy based on weather predictions
for each cluster.

the learning rate, the number of boosting iterations (i.e., the
number of trees to build), the maximum number of leaves
in one tree (i.e., the maximum number of nodes per tree),
and the maximum depth for a tree model (i.e., the maximum
distance between the root node of each tree and a leaf node).
The tuning is carried out with the hyperparameters presented
in Table 2 using 500 iterations.

The target data for load demand represent an aggregated
load of 29 customers from one Elenia secondary substation
located in central Finland. The solar PV production data were
retrieved from the same location using hourly PV simulations
with the renewable-ninja platform [35]. The solar PV is sim-
ulated using the MERRA-2 (global) dataset for a system with
30 kWp installed capacity and 10% loss, the system facing
south (azimuth angle 180◦) and inclined from the horizon

FIGURE 3. Daily dependency index with a fixed TD and a varying TS .

TABLE 1. Meteorological and time variables used for predicting faults.

with a tilt angle of 35◦. Fig. 5 illustrates the target series,
both of which have an hourly resolution for the year 2013.
Following the concept of weather-dependent operation of
low-carbon power systems, we base our predictions solely on
historical weather observations and time features presented
in Table 3. The weather observations are obtained using open
data of the Finnish Meteorological Institute [36].

The error of the point forecast for hour h on day d is
estimated by the deviation between the actual observation
yh,d and the prediction ŷh,d = f (Xh,d ) as follows:

εh,d = yh,d − ŷh,d . (3)

The performance evaluation of the model is carried out using
k-fold cross-validation with k = 12 folds separated per a
particular month of a year. In such an arrangement, the model
is trained using 11 months of a year and tested on an unseen
month. Such a validation is repeated for eachmonth. To quan-
tify the statistical quality of the forecasts for all fold data, the
metric of Mean Absolute Error (MAE) is employed:

MAE =
1

D · H

D∑
d=1

H∑
h=1

|εh,d | (4)
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FIGURE 4. Clusters of Elenia’s substations, the closest weather stations,
and the test accuracy achieved by the predictive model. The underlying
map in the ETRSTM35FIN coordinate system is taken from the website of
the national land survey of Finland.

FIGURE 5. Time series of the microgrid load demand and solar
production.

whereD·H is the number of points for the evaluation equal to
the number of hours per year. The lower the MAE, the better
the model accuracy.

The results of the model performance are demonstrated
in Table 4. The average point forecast error is close to
3 kW for the load demand and close to 2.5 kW1 for the

1For nonzero hours of solar PV production.

TABLE 2. Details of the hyperparameter search space.

TABLE 3. Exogenous features used for demand and solar production
forecasting.

TABLE 4. Model performance results for the testing folds.

solar PV production. However, similar to the fault pre-
diction, the historical weather observations should be sub-
stituted with the weather forecast data for the real use
case.

Besides the values of point prediction, an optimiza-
tion method in Section IV-A requires a covariance
matrix of expected errors to produce stochastic sce-
narios. This covariance matrix is obtained for each
target time series using post-hoc residual simulation;
i.e., relying on the corresponding model prediction
errors:

1 =



ε1,1 . . . ε1,d . . . ε1,D
...

. . .
...

. . .
...

εh,1 . . . εh,d . . . εh,D
...

. . .
...

. . .
...

εH ,1 . . . εH ,d . . . εH ,D

 (5)

where each row of the error matrix represents an hour of a
day, and each column a single daily observation. A covariance
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matrix 6 ∈ RH×H is then derived from the testing error
matrix of all folds as follows:

6 =



σ1,1 . . . σ1,hj . . . σ1,hJ
...

. . .
...

. . .
...

σhi,1 . . . σhi,hj . . . σhi,hJ
...

. . .
...

. . .
...

σhI ,1 . . . σhI ,hj . . . σhI ,hJ

 (6)

where

σhi,hj =
1

D− 1

D∑
d=1

(εhi,d − ε̂hi )(εhj,d − ε̂hj )
T (7)

is the variance of the marginal distributions of the prediction
errors for look-ahead hours hi and hj. The covariance matrix
illustrates the interdependence structure of prediction errors
for each forecast horizon. For instance, Fig. 6 shows the
examples of the target covariance matrices with a positive
covariance between the prediction hours for both prediction
targets. The positive covariance means that the prediction
errors at two hours tend to increase or decrease in tandem.
The covariance pattern has a distinct concentration along the
diagonal line, especially marked for the peak hours of load
demand and midday hours for solar PV production. There-
fore, the model has difficulties in correctly predicting the
target values at those hours. However, the covariances sharply
decrease with an increase in distance from these forecast
horizons.

IV. MICROGRID ENERGY STORAGE MANAGEMENT
A. OPTIMIZATION PROBLEM
The operation management of the MG aims to produce a
BESS schedule for the next day using convex stochastic
optimization with chance constraints, i.e., constraints that are
required to holdwith a high probability. The convex optimiza-
tion problem is described with an objective in Section IV-A1
and a list of constraints in Section IV-A2.

1) OBJECTIVE FUNCTION
The objective function of the optimization problem considers
a trade-off between cost reduction and outage prevention
goals:

minimize (1− λ) · fOp︸ ︷︷ ︸
cost reduction

+ λ · EfRel︸ ︷︷ ︸
outage prevention

subject to (19)− (29)︸ ︷︷ ︸
power balance and DER operational constraints

(8)

where λ ∈ [0, 1] is a weight coefficient that is equal to the
probability of an outage occurrence, fOp is an objective con-
taining the operating costs of devices, and EfRel is an approx-
imated expectation of the reliability of the supply objective.
Intuitively, the higher the probability of an outage is, the more
weight is given to the reliability of the supply goal. Otherwise,
the optimization prioritizes the cost-effective load shifting

FIGURE 6. Covariance matrices of forecast errors for the microgrid
(a) load demand and (b) solar PV production for the next day forecast
horizons.

with the BESS, e.g., by charging the BESS when the grid
energy is cheap and discharging when it is expensive.

The operation objective at any time t ∈ T = {1, 2, . . . ,T }
is defined by the electricity costs at the point of common
coupling (PCC) Cpcc

t and the degradation costs of BESS Cb
t :

fOp =
∑
t∈T

Cpcc
t +

∑
t∈T

Cb
t . (9)

The electricity costs are formed by selling the electricity
to the grid and buying it from the grid, as well as assum-
ing that the prices for the exported electricity Cex

t are often
lower than the prices of the imported electricity C im

t from the
grid [37], i.e., C im

t ≥ C
ex
t , ∀t ∈ T :

Cpcc
t = (Cex

t pt + (C im
t − C

ex
t )(pt + |pt |)/2)1t, ∀t ∈ T

(10)

where pt is the power scheduled at the PCC of the MG [38]
during the metering period 1t .
The MG purchase electricity price C im

t (e/kWh) consists
of the electricity network service charges Cnsc (e/kWh),
the price of electrical energy, and the electricity tax Cetax

(e/kWh). Here, the price of electrical energy is based on the
wholesale market prices Cws

t (e/kWh) and a retail margin.
The network service charges and the market price include a
value added tax (VAT, 24%). Finally, the purchase electricity
price is formulated as follows:

C im
t = Cws

t + C
rm
+ Cnsc

+ Cetax, ∀t ∈ T (11)

TheMG electricity selling priceCex
t consists of the wholesale

market priceCws
t (without VAT) and a network service charge

for the feed-in generation Cfic (e/kWh):

Cex
t = Cws

t − C
fic, ∀t ∈ T (12)

The degradation cost of the BESS during the operation is
included by penalizing excessive charge–discharge cycling
with a coefficient β as follows:

Cb
t = β|p

b
d,t |1t (13)

β =
C inv

2ncycDODmax
(14)

where pbd,t is a decision variable of scheduled battery storage
power, C inv is the investment cost of the BESS (e/kWh), ncyc
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is the estimated lifetime in equivalent cycles, and DODmax
is the maximum allowed depth of discharge (DoD). In addi-
tion, other market-related components can be added to the
objective function, such as revenue from the provision of a
BESS for the frequency regulation service [39]. This BESS
application is especially demanding for a low-carbon power
system with an increasing share of renewable generation.

The availability of self-supply and battery storage capacity
enables the MG to withstand the outage event in the upstream
grid by switching to island operation. In that case, the relia-
bility objective function is formulated using expected energy
not supplied (EENS), i.e., the amount of the net demand
unsupplied by local resources during the outage:

fRel = Cens
∑
t∈T

[poutt ]+1t, (15)

where [·]+ ≡ max[·, 0] is the elementwise ramp-up func-
tion, 1t is the metering period, Cens is the unit cost of the
energy not supplied, and poutt is the unsupplied net demand
during an outage. In such a formulation, we consider an equal
probability of an outage to happen at any hour of a day. The
unsupplied demand at time t is calculated based on the local
demand ploadd,t , supply p

solar
d,t , and available active power pb,supt

of the BESS as follows:

poutt = ploadd,t − p
solar
d,t − p

b,sup
d,t , ∀t ∈ T (16)

where

pb,supt =
ebt η

τmax
∑τmax

k=1 α
1−k

, (17)

is the available active power in one time step if the BESS
energy capacity ebt at time t is emptied at a constant power
over the next τmax time periods with a self-discharge rate α
and a discharge loss coefficient η [38]. The unknown vari-
ables (i.e., solar PV production psolard and load demand ploadd )
are specified as normal random variables p ∼ Normal(p̂, 6)
using the predicted mean and covariance matrix of prediction
errors from Section III-B. The expectation of the reliability
of the supply objective EfRel containing these random vari-
ables is then computed using scenario-based sample average
approximation (SAA):

EfRel ≈ (1/N )
N∑
i=1

fRel(p
b,sup
d , psolard,i , p

load
d,i ), (18)

where pbd serves as an optimization variable, whereas psolard,i
and ploadd,i are random variables with i = 1, . . . ,N scenarios
that are drawn using theMarkov chainMonte Carlo (MCMC)
method.

2) CONSTRAINTS AND COMPONENT MODELS
TheMG network power flow is described using a static direct
current (DC) power flow formulation. The static setting of
power flow assumes that the power flows are constant over the
metering time interval, typically equal to one hour, whereas
the DC formulation leaves out the reactive power flow and

FIGURE 7. Schematic of a microgrid network in the modeling
environment.

voltage phase angles. The network contains devices d ∈ D
(e.g., generators, loads, storages, and power converters) that
have one or more terminals providing a bidirectional power
flow.2 Here, the internal MG network structure is neglected
assuming a single bus connection of all devices without con-
necting lines. The reasoning for such a simplification given
in [40] concludes that an MG network with a limited capacity
and proximity of devices does not typically provide the lim-
iting constraints but complicates the formulation. Therefore,
following the formal notation in [41] to describe the problem,
a single bus of the MG is described by the net illustrated in
Fig. 7. The net exchanges power between terminals of devices
and guarantees power conservation over the connected termi-
nals (i.e., the sum of the terminal powers is zero). The power
balance in the net of the MG with M terminals in each time
period can be expressed as follows:∑

d∈D
pd,t = 0, ∀t ∈ T (19)

where pd,t is the scheduled power at time t ∈ T of a device
at the connected terminal.

The devices modeled in the MG network include a grid tie,
a renewable generator, an aggregated fixed-power load, and a
lossy BESS. The grid tie is a single-terminal device modeled
as a generator and representing a connection to an external
power grid. The renewable generator is a single-terminal
device that produces power, i.e., its terminal power pd,t
satisfies pd,t < 0. Similarly, the fixed load is also a
single-terminal device that consumes a fixed amount of power
pd,t > 0. The power values at the terminals of the gen-
erator and the load devices correspond to the mean fore-
casts of production and demand of these devices. The lossy
BESS is formulated as a composite device by connecting a
constant-efficiency power converter that models the charge
and discharge losses of the BESS and a storage with self-
discharge losses. The internal energy state ebt ∈ R+ of the
BESS is expressed as:

ebt = (1− α)ebt−1 + p
b
d,t−11t, ∀t ∈ {2, 3, . . . ,T } (20)

where α is the (per-period) leakage rate limited by 0 <

α ≤ 1, and 1t is the time interval between time periods.
Furthermore, we constrain the energy charge of the BESS

2Positive (negative) terminal power means power flows into (out of) the
device at that terminal.
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at the beginning and end of every optimization cycle to 50%
of the available energy capacity of the BESS E

b
:

eb1 = 0.5E
b
, (21)

(1− α)ebT + p
b
d,T1t ≥ 0.5E

b
, (22)

which enables to decouple the results of daily experiments.
The useful energy capacity is then limited by:

(1− DODmax)E
b
≤ ebt ≤ E

b
, ∀t ∈ T (23)

The charge and discharge rate is limited by the restricted p
and maximum p powers of the BESS as follows:

p ≤ pbd,t ≤ p, ∀t ∈ T (24)

The power converter is a two-terminal device that transfers
power at a certain efficiency. The conversion efficiency in the
forward and reverse directions η ∈ (0, 1) for terminals 1 and
2 is characterized by:

p2 = max{−ηp1,−(1/η)p1}, (25)

p ≤ p1 ≤ p. (26)

We approximate these nonconvex constraints with their con-
vex hull:

p1 + p2 ≥ (1− η)p1, (27)

p1 + p2 ≤ 2p
1− η
1+ η

. (28)

Similarly, typically nonconvex chance constraints are com-
puted with conservative approximations [42]. Here, we apply
chance constraints to the unsupplied net load demand:

Prob(pout ≥ 0) ≤ 1− γ, (29)

where γ is a high probability. With this constraint, we target
the probability of a deficient power balance during an outage
to be less than 1− γ .

3) IMPLEMENTATION DETAILS
The optimization problem is formulated and solved using
a collection of Python-based software packages for con-
vex optimization, namely cvxpy [43], cvxpower [41], and
cvxstoc [42], where cvxpy is a modeling language for con-
vex optimization problems; cvxpower provides a declarative
language for describing and optimizing power networks; and
cvxstoc is a modeling framework for specifying and solving
convex stochastic programs. We use 100 Monte Carlo sam-
ples for an approximation of the expression expectation and
the chance constraints. The chance constraint probability is
equal to 95%.

The simulation data are selected to represent the real-life
operating environment of the MG. The wholesale market
price is retrieved for the Finnish bidding area for the year
2019 using Nordpool’s historical market data. The static
values of the electricity tariff are taken from actual retail
tariffs and Elenia’s distribution tariffs. The characteristics
of the BESS are chosen based on the peak load demand of

TABLE 5. Values of costs used in the optimization of the MG operation
management.

the MG and interpolation of the reference scenario for the
development of the parameters of a stationary LiFePO4 BESS
to the year 2021 [44]. The charging/discharging efficiency
of the BESS is 96%, the battery investment cost C inv is
378.64 e/kWh, and the number of equivalent life cycles ncyc
is 104 cycles. The leakage rate of 0.1% of the BESS capacity
per day is equally distributed among T time periods and
applied at any time t as α = 0.001/T . With the allowed
DoD of 90 %, the marginal cost of the battery degradation
β is 0.021 e/kWh. The maximum number of time periods
for the expected duration of outages τmax is determined from
the relation of BESS energy capacity to nominal power and
equals 1 and 2 hours. The unit cost of the demand not supplied
consists of the unit cost for the amount and duration of unex-
pected interruptions in Finland, which are together equal to
12.1e/kWh [45], and the profit loss from the distribution fees
Cnsc not received. This value for the duration of unexpected
interruptions is given in the 2005 value of money and is not
adjusted using the consumer price index. All the static cost
data used in the optimization are provided in Table 5. The
implementation source codes and some real-world historical
data are available online.3

Four test scenarios are considered for the operation man-
agement of the MG: economical, reliable, uncertain, and
perfect foresight. The former two assume the usage of the
BESS solely for the objective functions of cost reduction
(i.e., λ = 0 in Eq. (8)) or outage reduction (i.e., λ = 1 in
Eq. (8)), whereas the latter two are described by Eq. (8)
with the predicted (i.e., uncertain scenario) and known (i.e.,
perfect foresight scenario) outage probability λ. Importantly,
the chance constraint is not applied for the economical sce-
nario. The objective functions in Eq. (8) are normalized for
the uncertain scenario using weighted min-max normaliza-
tion [46] applied to prosumer flexibility modeling in [39].
For instance, in the case of the cost reduction objective,
the minimum value is acquired from the economical sce-
nario, whereas the maximum is derived from the reliable
scenario. The same logic holds for the outage reduction
objective.

V. RESULTS AND DISCUSSION
A. TEST SCENARIOS
In this paper, we used real interruption data obtained from
several substations in Finland. For the sake of simplicity, the
MG was theoretically placed at the centroid of fault clusters
where the interruption data were obtained to produce fair

3https://git.io/Jundm
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FIGURE 8. Daily dependency index (RL) for the year 2013.

results. The scenarios chosen are the five clusters with the
best accuracy and the one with the lowest accuracy from
Fig. 4 as follows:
• Cluster 1: highest accuracy cluster ≈ 78%
• Cluster 2: accuracy cluster ≈ 75%
• Cluster 3: #1 accuracy cluster ≈ 73%
• Cluster 4: #2 accuracy cluster ≈ 73%
• Cluster 5: accuracy cluster ≈ 72%
• Cluster 6: lowest accuracy cluster ≈ 56%
Each cluster prediction is used independently for the opti-

mization as explained above in Section IV-A.

B. RESILIENCE
The daily resilience metric calculated using Eq. (2) for the
year 2013 is shown in Fig. 8, which depicts the combined use
of the proposed predictive interruption model and the eco-
nomical approach (predicted); considering only the econom-
ical approach (economical); the reliability model approach

(reliable); and faults to be known (foresight). The daily
resilience metric gives a granular view of how the prior
knowledge of the operational behavior of the microgrid can
enhance theMG resilience over a period of time.We analyzed
the faults in the region under study and found that 2 h for TD
explains more than 90% of the interruption time for outages
occurring in the region, and TU = 24−TD, because the daily
index analysis covers a period of 24 h. The variation seen in
the daily resilience illustrated in Fig. 8 is due the variation in
the load and in the energy stored in the battery.

Fig. 8 presents a comparison between the above-mentioned
approaches between clusters 1 and 6 (the highest and lowest
accuracies). Fig. 8 shows how the combination of economical
and predicted approaches faults yields a better dependency
and thus, the microgrid is more resilient to upcoming events
by having more energy available when a fault occurs. The
above-discussed trade-off maintains a balance that results in
a more robust grid but also considering the energy prices.
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FIGURE 9. Violin plot for RL in the highest accuracy clusters for the year
2013.

From only the economical perspective, there is a signif-
icant decrease in dependency when faults occur for that
specific day, thereby reducing the resilience. Furthermore,
Figs. 8b and 8d show how increasing the value of the battery
storage enhances the dependency index for all approaches.

A closer look at the all-year-round dependency for the
approaches is analyzed in Fig. 9: the economical and foresight
approaches are very similar having a lower adjacent value

smaller than the other two approaches and more outside
points. Moreover, the dependency data for the economical
approach is more distributed on the axes meaning that it
is not dependent on resilience. The reliable and predicted
approaches follow a resilient strategy and thereby a narrow
distance between adjacent values. Their medians are almost
the same but have variations in the first and third quartiles
with the predictive one having greater values closer to 1.
There is no difference between clusters for the economical
approach because it does not consider interruption data,
whereas for the other approaches the difference is almost neg-
ligible because of the smaller discrepancies in the interruption
accuracy.

The violin plot shown in Fig. 10 contains the plots of the
dependency index based on a 24 h ahead horizon and calcu-
lated hourly for five days (five without faults and five with
faults) for five clusters with a higher accuracy. The scenar-
ios plotted were the economical approach and the proposed
predictive approach. We can see that when a fault occurs in
these two scenarios, the proposed approach becomes slightly
more conservative, thereby narrowing the upper and lower
adjacent values andmaintaining themedian at higher levels of
dependency. The economical approach does not distinguish a
possible upcoming fault event, meaning that the lower adja-
cent value is smaller. The tendency of the proposed predicted
approach to be more conservative with the available energy
shows an increase in the resilience especially for the days that

FIGURE 10. Violin plot for RL in five clusters calculated hourly for days with and without a fault.
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have a high probability of a fault occurrence. The scenario
plotted in Fig. 10 considers 2 h of energy available in the
battery.

VI. CONCLUSION
Preparation of a grid against severe fault conditions is one of
the least investigated actions to take account of when increas-
ing the overall resilience in an MG. The reason behind this
is the unpredictable and probabilistic nature of these events.
In this paper, weather-based decision-making for charging a
BESS in an MG was developed. The methodology includes
three different models: interruption prediction, load demand,
and solar PV production forecast. We were able to effectively
predict an upcoming interruption in the system with 78%
accuracy and thereby implement a multiobjective chance
constraint optimization to schedule themicrogrid battery stor-
age according to the prediction. The proposed optimization
approach takes into consideration two objectives: resilience
to possible supply interruptions and economic dispatch so
that we can guarantee a safe and economical operation of the
grid.

We also proposed daily quantification of the resilience
metric of dependency, which measures on a daily basis the
energy stored in the BESS revealing for the day ahead how
independent the MG will be from the main grid. We showed
that when compared with the economical, reliable, and fore-
sight approaches, our control policy can improve the overall
resilience for short and long periods of time in regard to
an interruption in the main grid so that the MG operates in
the island mode. When calculating the resilience index in
our proposed approach, the probability of the occurrence of
a fault determines whether we can prepare the MG for the
upcoming events. Fault data are not usually available for all
places where microgrids are located or they are designed to
be built; this is due to companies’ polices that prevent the
data being shared, or data are simply nonexistent for the
region. The more data are available, the more precise are
the outcomes from outage models, meaning better results in
the MG resilience. Having this type of data, we can see from
our approach that a trade-off between an economical and
resilient MG can be possible by employing multiobjective
BESS optimization. An overall resilience improvement can
only be achieved by correctly assessing the framework cycle
and its individual pillars described in detail in the paper.

In summary, using interruption and economic dispatch
ensures that the microgrid does not operate oversized when
there is no risk of a fault occurrence and that it also enters
into a hardening state, which increases the amount of energy
stored in the BESS in the case of a high probability of a
fault occurrence, thereby supplying energy for longer periods
when operating in the island mode.
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